List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7647072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic Riboswitches for the Analysis of tRNA Processing by eukaryotic RNase P Enzymes. Rna, 2022, , rna.078814.121.	3.5	3
2	RNA Design Principles for Riboswitches that Regulate RNase P-Mediated tRNA Processing. Methods in Molecular Biology, 2022, , 179-202.	0.9	1
3	CCA-Addition Gone Wild: Unusual Occurrence and Phylogeny of Four Different tRNA Nucleotidyltransferases in Acanthamoeba castellanii. Molecular Biology and Evolution, 2021, 38, 1006-1017.	8.9	0
4	Beyond Plug and Pray: Context Sensitivity and <i>in silico</i> Design of Artificial Neomycin Riboswitches. RNA Biology, 2021, 18, 457-467.	3.1	6
5	Ligand-dependent tRNA processing by a rationally designed RNase P riboswitch. Nucleic Acids Research, 2021, 49, 1784-1800.	14.5	4
6	Crystallization and Structural Determination of an Enzyme:Substrate Complex by Serial Crystallography in a Versatile Microfluidic Chip. Journal of Visualized Experiments, 2021, , .	0.3	0
7	Changes of the tRNA Modification Pattern during the Development of Dictyostelium discoideum. Non-coding RNA, 2021, 7, 32.	2.6	1
8	CCA-addition in the cold: Structural characterization of the psychrophilic CCA-adding enzyme from the permafrost bacterium Planococcus halocryophilus. Computational and Structural Biotechnology Journal, 2021, 19, 5845-5855.	4.1	2
9	LOTTE-seq (Long hairpin oligonucleotide based tRNA high-throughput sequencing): specific selection of tRNAs with 3〙-CCA end for high-throughput sequencing. RNA Biology, 2020, 17, 23-32.	3.1	22
10	Unusual Occurrence of Two Bona-Fide CCA-Adding Enzymes in Dictyostelium discoideum. International Journal of Molecular Sciences, 2020, 21, 5210.	4.1	4
11	Adaptation of the Romanomermis culicivorax CCA-Adding Enzyme to Miniaturized Armless tRNA Substrates. International Journal of Molecular Sciences, 2020, 21, 9047.	4.1	6
12	Divergent Evolution of Eukaryotic CC- and A-Adding Enzymes. International Journal of Molecular Sciences, 2020, 21, 462.	4.1	5
13	Monitoring the Production of High Diffraction-Quality Crystals of Two Enzymes in Real Time Using In Situ Dynamic Light Scattering. Crystals, 2020, 10, 65.	2.2	3
14	Evolving methods for rational de novo design of functional RNA molecules. Methods, 2019, 161, 54-63.	3.8	6
15	Dual expression of CCA-adding enzyme and RNase T in Escherichia coli generates a distinct cca growth phenotype with diverse applications. Nucleic Acids Research, 2019, 47, 3631-3639.	14.5	7
16	A Temporal Order in 5â€2- and 3â€2- Processing of Eukaryotic tRNAHis. International Journal of Molecular Sciences, 2019, 20, 1384.	4.1	3
17	Post-Transcriptional Regulation of tRNA Pools To Govern the Central Dogma: A Perspective. Biochemistry, 2019, 58, 299-304.	2.5	1
18	A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCrJ, 2019, 6, 454-464.	2.2	23

#	Article	IF	CITATIONS
19	Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells. Nucleic Acids Research, 2018, 46, 1-10.	14.5	170
20	Accurate mapping of tRNA reads. Bioinformatics, 2018, 34, 1116-1124.	4.1	33
21	A tRNA's fate is decided at its 3′ end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 433-441.	1.9	41
22	Cold adaptation of tRNA nucleotidyltransferases: A tradeoff in activity, stability and fidelity. RNA Biology, 2018, 15, 144-155.	3.1	24
23	Examining tRNA 3â€2-ends in <i>Escherichia coli</i> : teamwork between CCA-adding enzyme, RNase T, and RNase R. Rna, 2018, 24, 361-370.	3.5	20
24	Combining crystallogenesis methods to produce diffraction-quality crystals of a psychrophilic tRNA-maturation enzyme. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 747-753.	0.8	8
25	Small but large enough: structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax. Nucleic Acids Research, 2018, 46, 9170-9180.	14.5	35
26	Applicability of a computational design approach for synthetic riboswitches. Nucleic Acids Research, 2017, 45, gkw1267.	14.5	52
27	Synthetic Riboswitches: From Plug and Pray toward Plug and Play. Biochemistry, 2017, 56, 1181-1198.	2.5	82
28	tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules, 2017, 7, 35.	4.0	241
29	Design of Artificial Riboswitches as Biosensors. Sensors, 2017, 17, 1990.	3.8	50
30	Genotyping bacterial and fungal pathogens using sequence variation in the gene for the CCA-adding enzyme. BMC Microbiology, 2016, 16, 47.	3.3	5
31	The CCAâ€adding enzyme: A central scrutinizer in tRNA quality control. BioEssays, 2015, 37, 975-982.	2.5	35
32	The identity of the discriminator base has an impact on CCA addition. Nucleic Acids Research, 2015, 43, 5617-5629.	14.5	22
33	The ancestor of modern Holozoa acquired the CCA-adding enzyme from Alphaproteobacteria by horizontal gene transfer. Nucleic Acids Research, 2015, 43, 6739-6746.	14.5	14
34	Design of Transcription Regulating Riboswitches. Methods in Enzymology, 2015, 550, 1-22.	1.0	8
35	Design criteria for synthetic riboswitches acting on transcription. RNA Biology, 2015, 12, 221-231.	3.1	41
36	Domain movements during CCA-addition: A new function for motif C in the catalytic core of the human tRNA nucleotidyltransferases. RNA Biology, 2015, 12, 435-446.	3.1	14

#	Article	IF	CITATIONS
37	From End to End: tRNA Editing at 5'- and 3'-Terminal Positions. International Journal of Molecular Sciences, 2014, 15, 23975-23998.	4.1	27
38	Biological evidence for the world's smallest tRNAs. Biochimie, 2014, 100, 151-158.	2.6	57
39	Reversible and Rapid Transfer-RNA Deactivation as a Mechanism of Translational Repression in Stress. PLoS Genetics, 2013, 9, e1003767.	3.5	94
40	De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 2013, 41, 2541-2551.	14.5	163
41	The TRAMP Complex Shows tRNA Editing Activity in S. cerevisiae. Molecular Biology and Evolution, 2012, 29, 1451-1459.	8.9	6
42	A new mitochondrial point mutation in the transfer RNALys gene associated with progressive external ophthalmoplegia with impaired respiratory regulation. Journal of the Neurological Sciences, 2012, 316, 108-111.	0.6	9
43	An inhibitory C-terminal region dictates the specificity of A-adding enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21040-21045.	7.1	20
44	tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization. Cellular and Molecular Life Sciences, 2010, 67, 1447-1463.	5.4	62
45	tRNAâ€nucleotidyltransferases: Highly unusual RNA polymerases with vital functions. FEBS Letters, 2010, 584, 297-302.	2.8	26
46	Unusual evolution of a catalytic core element in CCA-adding enzymes. Nucleic Acids Research, 2010, 38, 4436-4447.	14.5	19
47	tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Research, 2009, 37, D159-D162.	14.5	751
48	A comparative analysis of CCA-adding enzymes from human and E. coli: Differences in CCA addition and tRNA 3′-end repair. Biochimie, 2008, 90, 762-772.	2.6	42
49	Evolution of tRNA nucleotidyltransferases: A small deletion generated CC-adding enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7953-7958.	7.1	42
50	A comparative analysis of two conserved motifs in bacterial poly(A) polymerase and CCA-adding enzyme. Nucleic Acids Research, 2008, 36, 5212-5220.	14.5	25
51	A Splice Variant of the Human CCA-adding Enzyme with Modified Activity. Journal of Molecular Biology, 2007, 366, 1258-1265.	4.2	13
52	Hfq stimulates the activity of the CCA-adding enzyme. BMC Molecular Biology, 2007, 8, 92.	3.0	22
53	Is yeast on its way to evolving tRNA editing?. EMBO Reports, 2005, 6, 367-372.	4.5	10
54	Exchange of Regions between Bacterial Poly(A) Polymerase and the CCA-Adding Enzyme Generates Altered Specificities. Molecular Cell, 2004, 15, 389-398.	9.7	46

#	Article	IF	CITATIONS
55	A Pathogenesis-associated Mutation in Human Mitochondrial tRNALeu(UUR) Leads to Reduced 3′-End Processing and CCA Addition. Journal of Molecular Biology, 2004, 337, 535-544.	4.2	60
56	Mitochondrial tRNA editing. Topics in Current Genetics, 2004, , 81-96.	0.7	1
57	Crystal Structure of the Human CCA-adding Enzyme: Insights into Template-independent Polymerization. Journal of Molecular Biology, 2003, 328, 985-994.	4.2	71
58	A universal method to produce in vitro transcripts with homogeneous 3' ends. Nucleic Acids Research, 2002, 30, 56e-56.	14.5	140
59	The final cut. EMBO Reports, 2001, 2, 17-20.	4.5	97
60	This Is the End: Processing, Editing and Repair at the tRNA 3-Terminus. Biological Chemistry, 2001, 382, 1147-56.	2.5	73
61	Evidence for Import of a Lysyl-tRNA into Marsupial Mitochondria. Molecular Biology of the Cell, 2001, 12, 2688-2698.	2.1	82
62	Repair of tRNAs in metazoan mitochondria. Nucleic Acids Research, 2000, 28, 2043-2048.	14.5	34
63	Processing and Editing of Overlapping tRNAs in Human Mitochondria. Journal of Biological Chemistry, 1998, 273, 31977-31984.	3.4	46
64	C to U editing and modifications during the maturation of the mitochondrial tRNAASPin marsupials. Nucleic Acids Research, 1995, 23, 3380-3384.	14.5	68
65	Production of RNAs with Homogeneous $5\hat{a}$ € ² and $3\hat{a}$ € ² Ends. , 0, , 22-35.		13