Michael G. Gänzle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7647067/publications.pdf Version: 2024-02-01

		8755	12946
325	22,171	75	131
papers	citations	h-index	g-index
332	332	332	16195
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Antimicrobial plant secondary metabolites, MDR transporters and antimicrobial resistance in cereal-associated lactobacilli: is there a connection?. Food Microbiology, 2022, 102, 103917.	4.2	12
2	Lactic Acid Bacteria: Taxonomy and Biodiversity. , 2022, , 263-274.		1
3	Lactose Derivatives. , 2022, , 737-743.		0
4	Lactose. , 2022, , 96-102.		1
5	Lactose: Galacto-Oligosaccharides. , 2022, , 757-763.		1
6	Characterization of a recombinant <scp>10â€linoleic</scp> acid hydratase from <i>Lactiplantibacillus plantarum</i> <scp>ZS2058</scp> and biosynthesis of 10―hydroxyâ€ <i>cis</i> â€12â€octadecenoic acid. Jourr of the Science of Food and Agriculture, 2022, 102, 2212-2219.	iab.5	0
7	LC-MS/MS quantitation of α-amylase/trypsin inhibitor CM3 and glutathione during wheat sourdough breadmaking. Journal of Applied Microbiology, 2022, 133, 120-129.	3.1	6
8	Metabolic services of intestinal microbiota of swine: metabolism of carbohydrates and bile salts. Burleigh Dodds Series in Agricultural Science, 2022, , 37-74.	0.2	0
9	After the storm—Perspectives on the taxonomy of Lactobacillaceae. JDS Communications, 2022, 3, 222-227.	1.5	21
10	The periodic table of fermented foods: limitations and opportunities. Applied Microbiology and Biotechnology, 2022, 106, 2815-2826.	3.6	37
11	Effects of protein fibrillation and antioxidants on probiotic survival during ambient storage. Food Chemistry, 2022, 389, 133117.	8.2	5
12	Furfurilactobacillus milii sp. nov., isolated from fermented cereal foods. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	12
13	African cereal fermentations: A review on fermentation processes and microbial composition of non-alcoholic fermented cereal foods and beverages. International Journal of Food Microbiology, 2022, 378, 109815.	4.7	15
14	Glycomacropeptide from camel milk inhibits the adhesion of enterotoxigenic Escherichia coli K88 to porcine cells. International Dairy Journal, 2022, 134, 105448.	3.0	6
15	Microencapsulation of probiotic lactobacilli with shellac as moisture barrier and to allow controlled release. Journal of the Science of Food and Agriculture, 2021, 101, 726-734.	3.5	27
16	The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 196-208.	17.8	316
17	Composition and activity of microbiota in sourdough and their effect on bread quality and safety. , 2021, , 129-172.		6
18	Investigating the potential of unsaturated fatty acids as antifungal crop protective agents. Canadian Journal of Plant Science, 2021, 101, 73-85.	0.9	1

#	Article	IF	CITATIONS
19	Carboxylic acid-catalysed hydrolysis of polygalacturonic acid in subcritical water media. Journal of Supercritical Fluids, 2021, 169, 105103.	3.2	7
20	Limosilactobacillus balticus sp. nov., Limosilactobacillus agrestis sp. nov., Limosilactobacillus albertensis sp. nov., Limosilactobacillus rudii sp. nov. and Limosilactobacillus fastidiosus sp. nov., five novel Limosilactobacillus species isolated from the vertebrate gastrointestinal tract, and proposal of six subspecies of Limosilactobacillus reuteri adapted to the gastrointestinal tract of specific vertebrate hosts. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	60
21	Degradation of Wheat Germ Agglutinin during Sourdough Fermentation. Foods, 2021, 10, 340.	4.3	13
22	Abundance and Expression of Shiga Toxin Genes in Escherichia coli at the Recto-Anal Junction Relates to Host Immune Genes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 633573.	3.9	9
23	Contribution of the Locus of Heat Resistance to Growth and Survival of Escherichia coli at Alkaline pH and at Alkaline pH in the Presence of Chlorine. Microorganisms, 2021, 9, 701.	3.6	5
24	608 PREBIOTIC Î ² -FRUCTANS PREVENT SUBCLINICAL INTESTINAL INFLAMMATION IN ULCERATIVE COLITIS PATIENTS WHO ARE IN CLINICAL REMISSION. Gastroenterology, 2021, 160, S-120.	1.3	2
25	Effect of feeding acidified or fermented barley using Limosilactobacillus reuteri with or without supplemental phytase on diet nutrient digestibility in growing pigs. Journal of Animal Science, 2021, 99,	0.5	0
26	Enzymatic and microbial conversions to achieve sugar reduction in bread. Food Research International, 2021, 143, 110296.	6.2	10
27	Horizontal Transmission of Stress Resistance Genes Shape the Ecology of Beta- and Gamma-Proteobacteria. Frontiers in Microbiology, 2021, 12, 696522.	3.5	20
28	Characterization of γ-glutamyl cysteine ligases from Limosilactobacillus reuteri producing kokumi-active γ-glutamyl dipeptides. Applied Microbiology and Biotechnology, 2021, 105, 5503-5515.	3.6	9
29	Ecology and Function of the Transmissible Locus of Stress Tolerance in Escherichia coli and Plant-Associated Enterobacteriaceae. MSystems, 2021, 6, e0037821.	3.8	10
30	Genetic Determinants of Stress Resistance in Desiccated Salmonella enterica. Applied and Environmental Microbiology, 2021, 87, e0168321.	3.1	8
31	Influence of drying conditions, food composition, and water activity on the thermal resistance of Salmonella enterica. Food Research International, 2021, 147, 110548.	6.2	18
32	Effects of high-pressure carbon dioxide on microbial quality and germination of cereal grains and beans. Journal of Supercritical Fluids, 2021, 175, 105272.	3.2	9
33	3-Hydroxypropionic acid contributes to the antibacterial activity of glycerol metabolism by the food microbe Limosilactobacillus reuteri. Food Microbiology, 2021, 98, 103720.	4.2	15
34	Antimicrobial activity and drying potential of high intensity blue light pulses (455Ânm) emitted from LEDs. Food Research International, 2021, 148, 110601.	6.2	10
35	Resistance of biofilm- and pellicle-embedded strains of Escherichia coli encoding the transmissible locus of stress tolerance (tLST) to oxidative sanitation chemicals. International Journal of Food Microbiology, 2021, 359, 109425.	4.7	8
36	PSIV-B-28 Effect of feeding acidified or fermented barley grain using Limosilactobacillus reuteri with or without supplemental phytase on diet nutrient digestibility in growing pigs. Journal of Animal Science, 2021, 99, 391-392.	0.5	1

#	Article	IF	CITATIONS
37	Comparative Genomics and In Vitro Plant Growth Promotion and Biocontrol Traits of Lactic Acid Bacteria from the Wheat Rhizosphere. Microorganisms, 2021, 9, 78.	3.6	24
38	A Metagenomics Investigation of Intergenerational Effects of Non-nutritive Sweeteners on Gut Microbiome. Frontiers in Nutrition, 2021, 8, 795848.	3.7	13
39	Contribution of glutaminases to glutamine metabolism and acid resistance in Lactobacillus reuteri and other vertebrate host adapted lactobacilli. Food Microbiology, 2020, 86, 103343.	4.2	25
40	Digestibility of branched and linear α-gluco-oligosaccharides in vitro and in ileal-cannulated pigs. Food Research International, 2020, 127, 108726.	6.2	12
41	Inactivation of Salmonella spp. in wheat flour by 395†nm pulsed light emitting diode (LED) treatment and the related functional and structural changes of gluten. Food Research International, 2020, 127, 108716.	6.2	33
42	Effect of drying on oxidation of membrane lipids and expression of genes encoded by the Shiga toxin prophage in Escherichia coli. Food Microbiology, 2020, 86, 103332.	4.2	7
43	Ingestion of isomalto-oligosaccharides stimulates insulin and incretin hormone secretion in healthy adults. Journal of Functional Foods, 2020, 65, 103730.	3.4	16
44	Identification and Quantitation of Hydroxy Fatty Acids in Fermented Sausage Samples. Journal of Agricultural and Food Chemistry, 2020, 68, 8648-8657.	5.2	14
45	Sourdough Fermentation Degrades Wheat Alpha-Amylase/Trypsin Inhibitor (ATI) and Reduces Pro-Inflammatory Activity. Foods, 2020, 9, 943.	4.3	47
46	Comparison of the Functionality of Exopolysaccharides Produced by Sourdough Lactic Acid Bacteria in Bread and Steamed Bread. Journal of Agricultural and Food Chemistry, 2020, 68, 8907-8914.	5.2	28
47	Characterization of the Extracellular Fructanase FruA in <i>Lactobacillus crispatus</i> and Its Contribution to Fructan Hydrolysis in Breadmaking. Journal of Agricultural and Food Chemistry, 2020, 68, 8637-8647.	5.2	24
48	Characterization of two extracellular arabinanases in Lactobacillus crispatus. Applied Microbiology and Biotechnology, 2020, 104, 10091-10103.	3.6	7
49	Characterization of the two nonidentical ArgR regulators of Tetragenococcus halophilus and their regulatory effects on arginine metabolism. Applied Microbiology and Biotechnology, 2020, 104, 8775-8787.	3.6	7
50	Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3476-3500.	11.7	29
51	A Phylogenetic View on the Role of Glycerol for Growth Enhancement and Reuterin Formation in Limosilactobacillus reuteri. Frontiers in Microbiology, 2020, 11, 601422.	3.5	11
52	Metabolic and Gut Microbiota Responses to Sourdough Pasta Consumption in Overweight and Obese Adults. Frontiers in Nutrition, 2020, 7, 615003.	3.7	5
53	Reply to Comment on Huang, X., et al. "Sourdough Fermentation Degrades Wheat Alpha-Amylase/Trypsin Inhibitor (ATI) and Reduces Pro-Inflammatory Activity― Foods 2020, 9, 943. Foods, 2020, 9, 1405.	4.3	1
54	Structure-function relationships of antifungal monohydroxy unsaturated fatty acids (HUFA) of plant and bacterial origin. Food Research International, 2020, 134, 109237.	6.2	14

#	Article	IF	CITATIONS
55	Heat and Pressure Resistance in Escherichia coli Relates to Protein Folding and Aggregation. Frontiers in Microbiology, 2020, 11, 111.	3.5	16
56	Development of gluten-free breads started with chia and flaxseed sourdoughs fermented by selected lactic acid bacteria. LWT - Food Science and Technology, 2020, 125, 109189.	5.2	13
57	Lethality of high-pressure carbon dioxide on Shiga toxin-producing Escherichia coli, Salmonella and surrogate organisms on beef jerky. International Journal of Food Microbiology, 2020, 321, 108550.	4.7	13
58	The Locus of Heat Resistance Confers Resistance to Chlorine and Other Oxidizing Chemicals in Escherichia coli. Applied and Environmental Microbiology, 2020, 86, .	3.1	31
59	Probiotic encapsulation in water-in-water emulsion via heteroprotein complex coacervation of type-A gelatin/sodium caseinate. Food Hydrocolloids, 2020, 105, 105790.	10.7	82
60	Detection of enterohaemorrhagic Escherichia coli in food by droplet digital PCR to detect simultaneous virulence factors in a single genome. Food Microbiology, 2020, 90, 103466.	4.2	20
61	Host-adapted lactobacilli in food fermentations: impact of metabolic traits of host adapted lactobacilli on food quality and human health. Current Opinion in Food Science, 2020, 31, 71-80.	8.0	39
62	Microbiota stratification and succession of amylaseâ€producing <i>Bacillus</i> in traditional Chinese Jiuqu (fermentation starters). Journal of the Science of Food and Agriculture, 2020, 100, 3544-3553.	3.5	18
63	Ecological Importance of Cross-Feeding of the Intermediate Metabolite 1,2-Propanediol between Bacterial Gut Symbionts. Applied and Environmental Microbiology, 2020, 86, .	3.1	40
64	Effect of copy number of the spoVA2mob operon, sourdough and reutericyclin on ropy bread spoilage caused by Bacillus spp Food Microbiology, 2020, 91, 103507.	4.2	16
65	Food fermentations for improved digestibility of plant foods – an essential ex situ digestion step in agricultural societies?. Current Opinion in Food Science, 2020, 32, 124-132.	8.0	48
66	In vitro digestibility of commercial and experimental isomalto-oligosaccharides. Food Research International, 2020, 134, 109250.	6.2	23
67	Genetic Determinants of Hydroxycinnamic Acid Metabolism in Heterofermentative Lactobacilli. Applied and Environmental Microbiology, 2020, 86, .	3.1	37
68	A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 2782-2858.	1.7	2,775
69	Feeding Limosilactobacillus fermentum K9-2 and Lacticaseibacillus casei K9-1, or Limosilactobacillus reuteri TMW1.656 Reduces Pathogen Load in Weanling Pigs. Frontiers in Microbiology, 2020, 11, 608293.	3.5	11
70	Metabolism of phenolic acids in whole wheat and rye malt sourdoughs. Food Microbiology, 2019, 77, 43-51.	4.2	66
71	114 Role of fiber in promoting health in nursery pigs. Journal of Animal Science, 2019, 97, 64-65.	0.5	0
72	The Copy Number of the <i>spoVA</i> ^{2mob} Operon Determines Pressure Resistance of <i>Bacillus</i> Endospores. Applied and Environmental Microbiology, 2019, 85, .	3.1	19

#	Article	IF	CITATIONS
73	Dynamics of Enterobacteriaceae and lactobacilli in model sourdoughs are driven by pH and concentrations of sucrose and ferulic acid. LWT - Food Science and Technology, 2019, 114, 108394.	5.2	37
74	PSVII-16 Galactosylated chitosan-oligosaccharides have anti-adhesive effect against enterotoxigenic Escherichia coli in piglets. Journal of Animal Science, 2019, 97, 224-224.	0.5	0
75	Effect of sodium chloride and chitosan on the inactivation of heat resistant or Shiga-toxin producing Escherichia coli during grilling of burger patties. International Journal of Food Microbiology, 2019, 308, 108308.	4.7	1
76	Effect of Mixed Cultures of Yeast and Lactobacilli on the Quality of Wheat Sourdough Bread. Frontiers in Microbiology, 2019, 10, 2113.	3.5	54
77	Complementary Antibacterial Effects of Bacteriocins and Organic Acids as Revealed by Comparative Analysis of <i>Carnobacterium</i> spp. from Meat. Applied and Environmental Microbiology, 2019, 85, .	3.1	22
78	Tolerance and cytotoxicity of naphthenic acids on microorganisms isolated from oil sands process-affected water. Science of the Total Environment, 2019, 695, 133749.	8.0	8
79	Antimicrobial activity of bioactive starch packaging films against Listeria monocytogenes and reconstituted meat microbiota on ham. International Journal of Food Microbiology, 2019, 305, 108253.	4.7	37
80	Toward rational selection criteria for selection of probiotics in pigs. Advances in Applied Microbiology, 2019, 107, 83-112.	2.4	13
81	Glycopeptides from egg white ovomucin inhibit K88ac enterotoxigenic Escherichia coli adhesion to porcine small intestinal epithelial cell-line. Journal of Functional Foods, 2019, 54, 320-328.	3.4	11
82	Composition and Origin of the Fermentation Microbiota of Mahewu, a Zimbabwean Fermented Cereal Beverage. Applied and Environmental Microbiology, 2019, 85, .	3.1	46
83	Metagenomic reconstructions of gut microbial metabolism in weanling pigs. Microbiome, 2019, 7, 48.	11.1	97
84	Lactose—a conditional prebiotic?. , 2019, , 155-173.		4
85	Pea polyphenolics and hydrolysis processing alter microbial community structure and early pathogen colonization in mice. Journal of Nutritional Biochemistry, 2019, 67, 101-110.	4.2	17
86	Inactivation of Escherichia Coli and Salmonella Using 365 and 395 nm High Intensity Pulsed Light Emitting Diodes. Foods, 2019, 8, 679.	4.3	24
87	Lifestyles of sourdough lactobacilli – Do they matter for microbial ecology and bread quality?. International Journal of Food Microbiology, 2019, 302, 15-23.	4.7	105
88	Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. International Journal of Food Microbiology, 2019, 302, 8-14.	4.7	72
89	Sensory analysis of juice blend containing isomalto-oligosaccharides produced by fermentation with Weissella cibaria. Food Research International, 2019, 124, 86-92.	6.2	13
90	Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes, 2019, 10, 334-357.	9.8	114

#	Article	IF	CITATIONS
91	Comparative assessment of qPCR enumeration methods that discriminate between live and dead Escherichia coli O157:H7 on beef. Food Microbiology, 2019, 79, 41-47.	4.2	17
92	Challenges and opportunities related to the use of chitosan as a food preservative. Journal of Applied Microbiology, 2019, 126, 1318-1331.	3.1	64
93	Effect of chitosan, and bacteriocin – Producing Carnobacterium maltaromaticum on survival of Escherichia coli and Salmonella Typhimurium on beef. International Journal of Food Microbiology, 2019, 290, 68-75.	4.7	24
94	Impact of probiotic <i>Lactobacillus</i> sp. on autochthonous lactobacilli in weaned piglets. Journal of Applied Microbiology, 2019, 126, 242-254.	3.1	16
95	Lactic Acid Bacteria in Cereal-Based Products. , 2019, , 199-213.		14
96	Proposal to reclassify four Lactobacillus species as Apilactobacillus bombintestini, Companilactobacillus suantsaicola, Lactiplantibacillus garii and Levilactobacillus suantsaiihabitans. International Journal of Systematic and Evolutionary Microbiology, 2019, 71, .	1.7	10
97	Prebiotics, FODMAPs and dietary fiber — conflicting concepts in development of functional food products?. Current Opinion in Food Science, 2018, 20, 30-37.	8.0	28
98	Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri. International Journal of Food Microbiology, 2018, 272, 12-21.	4.7	53
99	Structure and function relationships of the binding of β- and ɑ-galactosylated oligosaccharides to K88 fimbriae of enterotoxigenic Escherichia coli. International Dairy Journal, 2018, 81, 104-112.	3.0	4
100	Ambient storage of microencapsulated <i>Lactobacillus plantarum</i> ST-III by complex coacervation of type-A gelatin and gum arabic. Food and Function, 2018, 9, 1000-1008.	4.6	36
101	Development of antimicrobial films based on cassava starch, chitosan and gallic acid using subcritical water technology. Journal of Supercritical Fluids, 2018, 137, 101-110.	3.2	56
102	γ-Glutamyl Cysteine Ligase of Lactobacillus reuteri Synthesizes γ-Glutamyl Dipeptides in Sourdough. Journal of Agricultural and Food Chemistry, 2018, 66, 12368-12375.	5.2	15
103	Comparative Genomics and Characterization of the Late Promoter pR' from Shiga Toxin Prophages in Escherichia coli. Viruses, 2018, 10, 595.	3.3	10
104	Effect of Glutathione Dehydrogenase of <i>Lactobacillus sanfranciscensis</i> on Gluten Properties and Bread Volume in Type I Wheat Sourdough Bread. Journal of Agricultural and Food Chemistry, 2018, 66, 9770-9776.	5.2	34
105	Effect of Pressure, Reconstituted RTE Meat Microbiota, and Antimicrobials on Survival and Post-pressure Growth of Listeria monocytogenes on Ham. Frontiers in Microbiology, 2018, 9, 1979.	3.5	22
106	Effect of temperature on production of oligosaccharides and dextran by Weissella cibaria 10â€ [–] M. International Journal of Food Microbiology, 2018, 280, 27-34.	4.7	43
107	Use of Sourdough in Low FODMAP Baking. Foods, 2018, 7, 96.	4.3	73
108	Growth of Carnobacterium spp. isolated from chilled vacuum-packaged meat under relevant acidic conditions. International Journal of Food Microbiology, 2018, 286, 120-127.	4.7	20

#	Article	IF	CITATIONS
109	Effect of starter cultures on taste-active amino acids and survival of pathogenic Escherichia coli in dry fermented beef sausages. European Food Research and Technology, 2018, 244, 2203-2212.	3.3	18
110	The Effect of Carbohydrates and Bacteriocins on the Growth Kinetics and Resistance of Listeria monocytogenes. Frontiers in Microbiology, 2018, 9, 347.	3.5	14
111	Daqu Fermentation Selects for Heat-Resistant Enterobacteriaceae and Bacilli. Applied and Environmental Microbiology, 2018, 84, .	3.1	23
112	Aspergillus oryzae reduces IgE binding ability of allergenic egg white proteins. Frontiers of Agricultural Science and Engineering, 2018, 5, 373.	1.4	2
113	Identification and Characterization of Glycopeptides from Egg Protein Ovomucin with Anti-Agglutinating Activity against Porcine K88 Enterotoxigenic <i>Escherichia coli</i> Strains. Journal of Agricultural and Food Chemistry, 2017, 65, 777-783.	5.2	27
114	The locus of heat resistance (LHR) mediates heat resistance in Salmonella enterica , Escherichia coli and Enterobacter cloacae. Food Microbiology, 2017, 64, 96-103.	4.2	48
115	Effect of Glutathione on the Taste and Texture of Type I Sourdough Bread. Journal of Agricultural and Food Chemistry, 2017, 65, 4321-4328.	5.2	41
116	Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide. Applied and Environmental Microbiology, 2017, 83, .	3.1	27
117	Enzymatic Synthesis and Purification of Galactosylated Chitosan Oligosaccharides Reducing Adhesion of Enterotoxigenic <i>Escherichia coli</i> K88. Journal of Agricultural and Food Chemistry, 2017, 65, 5142-5150.	5.2	15
118	Identification and quantification of virulence factors of enterotoxigenic Escherichia coli by high-resolution melting curve quantitative PCR. BMC Microbiology, 2017, 17, 114.	3.3	21
119	Mechanisms of inactivation of Candida humilis and Saccharomyces cerevisiae by pulsed electric fields. Bioelectrochemistry, 2017, 115, 47-55.	4.6	12
120	Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 2017, 44, 94-102.	6.6	855
121	Whole-Grain Starch and Fiber Composition Modifies Ileal Flow of Nutrients and Nutrient Availability in the Hindgut, Shifting Fecal Microbial Profiles in Pigs. Journal of Nutrition, 2017, 147, jn255851.	2.9	13
122	Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food. Applied and Environmental Microbiology, 2017, 83, .	3.1	50
123	Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli. Applied and Environmental Microbiology, 2017, 83, .	3.1	49
124	High-Speed Counter-Current Chromatography (HSCCC) Purification of Antifungal Hydroxy Unsaturated Fatty Acids from Plant-Seed Oil and <i>Lactobacillus</i> Cultures. Journal of Agricultural and Food Chemistry, 2017, 65, 11229-11236.	5.2	24
125	Effect of acceptor carbohydrates on oligosaccharide and polysaccharide synthesis by dextransucrase DsrM from Weissella cibaria. Food Research International, 2017, 99, 603-611.	6.2	31
126	Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiology Reviews, 2017, 41, S27-S48.	8.6	400

#	Article	IF	CITATIONS
127	Lactose and lactose-derived oligosaccharides: More than prebiotics?. International Dairy Journal, 2017, 67, 61-72.	3.0	58
128	Editorial: Industrial and Host Associated Stress Responses in Food Microbes. Implications for Food Technology and Food Safety. Frontiers in Microbiology, 2017, 8, 1522.	3.5	6
129	Characterization of Linoleate 10-Hydratase of Lactobacillus plantarum and Novel Antifungal Metabolites. Frontiers in Microbiology, 2016, 7, 1561.	3.5	45
130	Some Like It Hot: Heat Resistance of Escherichia coli in Food. Frontiers in Microbiology, 2016, 7, 1763.	3.5	58
131	Antifungal activity of secondary plant metabolites from potatoes (<i>Solanum tuberosum</i> L.): Glycoalkaloids and phenolic acids show synergistic effects. Journal of Applied Microbiology, 2016, 120, 955-965.	3.1	40
132	Evolution of sourdough microbiota in spontaneous sourdoughs started with different plant materials. International Journal of Food Microbiology, 2016, 232, 35-42.	4.7	76
133	The effect of growth temperature, process temperature, and sodium chloride on the high-pressure inactivation of Listeria monocytogenes on ham. European Food Research and Technology, 2016, 242, 2021-2029.	3.3	17
134	Effect of hydrostatic pressure and antimicrobials on survival of Listeria monocytogenes and enterohaemorrhagic Escherichia coli in beef. Innovative Food Science and Emerging Technologies, 2016, 38, 321-327.	5.6	28
135	Composition and function of sourdough microbiota: From ecological theory to bread quality. International Journal of Food Microbiology, 2016, 239, 19-25.	4.7	134
136	Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – A review. Food Research International, 2016, 89, 39-47.	6.2	408
137	Site Directed Mutagenesis of Dextransucrase DsrM from <i>Weissella cibaria</i> : Transformation to a Reuteransucrase. Journal of Agricultural and Food Chemistry, 2016, 64, 6848-6855.	5.2	8
138	Effect of proteolysis on the sialic acid content and bifidogenic activity of ovomucin hydrolysates. Food Chemistry, 2016, 212, 78-86.	8.2	21
139	Synthesis of Taste-Active γ-Glutamyl Dipeptides during Sourdough Fermentation by <i>Lactobacillus reuteri</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 7561-7568.	5.2	34
140	Structure-function relationships of bacterial and enzymatically produced reuterans and dextran in sourdough bread baking application. International Journal of Food Microbiology, 2016, 239, 95-102.	4.7	59
141	Preparation of chitooligosaccharides from fungal waste mycelium by recombinant chitinase. Carbohydrate Research, 2016, 430, 1-7.	2.3	18
142	Effect of the food matrix on pressure resistance of Shiga-toxin producing Escherichia coli. Food Microbiology, 2016, 57, 96-102.	4.2	14
143	Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. International Journal of Food Microbiology, 2016, 222, 16-22.	4.7	71
144	Conversion of ginsenosides by Lactobacillus plantarum studied by liquid chromatography coupled to quadrupole trap mass spectrometry. Food Research International, 2015, 76, 709-718.	6.2	24

#	Article	IF	CITATIONS
145	Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Scientific Reports, 2015, 5, 18234.	3.3	65
146	Biochemical analysis of respiratory metabolism in the heterofermentative <i>Lactobacillus spicheri</i> and <i>Lactobacillus reuteri</i> . Journal of Applied Microbiology, 2015, 119, 763-775.	3.1	29
147	Mechanisms of pressure-mediated cell death and injury in Escherichia coli: from fundamentals to food applications. Frontiers in Microbiology, 2015, 6, 599.	3.5	45
148	Reutericyclin producing Lactobacillus reuteri modulates development of fecal microbiota in weanling pigs. Frontiers in Microbiology, 2015, 6, 762.	3.5	38
149	Genetic determinants of heat resistance in Escherichia coli. Frontiers in Microbiology, 2015, 6, 932.	3.5	105
150	Effect of Glutamate Accumulation During Sourdough Fermentation with <i>Lactobacillus reuteri</i> on the Taste of Bread and Sodiumâ€Reduced Bread. Cereal Chemistry, 2015, 92, 224-230.	2.2	61
151	Genetic Determinants of Reutericyclin Biosynthesis in Lactobacillus reuteri. Applied and Environmental Microbiology, 2015, 81, 2032-2041.	3.1	56
152	Variation in Heat and Pressure Resistance of Verotoxigenic and Nontoxigenic Escherichia coli. Journal of Food Protection, 2015, 78, 111-120.	1.7	57
153	Plant defence mechanisms and enzymatic transformation products and their potential applications in food preservation: Advantages and limitations. Trends in Food Science and Technology, 2015, 46, 49-59.	15.1	23
154	Intravaginally administered lactic acid bacteria expedited uterine involution and modulated hormonal profiles of transition dairy cows. Journal of Dairy Science, 2015, 98, 6018-6028.	3.4	16
155	Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2015, 2, 106-117.	8.0	454
156	Development and validation of a surrogate strain cocktail to evaluate bactericidal effects of pressure on verotoxigenic Escherichia coli. International Journal of Food Microbiology, 2015, 205, 16-22.	4.7	25
157	Feed Fermentation with Reuteran- and Levan-Producing Lactobacillus reuteri Reduces Colonization of Weanling Pigs by Enterotoxigenic Escherichia coli. Applied and Environmental Microbiology, 2015, 81, 5743-5752.	3.1	52
158	A Genomic View of Lactobacilli and Pediococci Demonstrates that Phylogeny Matches Ecology and Physiology. Applied and Environmental Microbiology, 2015, 81, 7233-7243.	3.1	195
159	High Amylose Starch with Low In Vitro Digestibility Stimulates Hindgut Fermentation and Has a Bifidogenic Effect in Weaned Pigs. Journal of Nutrition, 2015, 145, 2464-2470.	2.9	58
160	Diversity and dynamics of bacteriocins from human microbiome. Environmental Microbiology, 2015, 17, 2133-2143.	3.8	106
161	Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, 2015, 46, 272-279.	4.2	211
162	Novel two-component regulatory systems play a role in biofilm formation of Lactobacillus reuteri rodent isolate 100-23. Microbiology (United Kingdom), 2014, 160, 795-806.	1.8	10

#	Article	IF	CITATIONS
163	Effect of Lineage-Specific Metabolic Traits of Lactobacillus reuteri on Sourdough Microbial Ecology. Applied and Environmental Microbiology, 2014, 80, 5782-5789.	3.1	29
164	Novel Pyrano and Vinylphenol Adducts of Deoxyanthocyanidins in Sorghum Sourdough. Journal of Agricultural and Food Chemistry, 2014, 62, 11536-11546.	5.2	24
165	BREAD Sourdough Bread. , 2014, , 309-315.		5
166	Characterization of α-galacto-oligosaccharides formed via heterologous expression of α-galactosidases from Lactobacillus reuteri in Lactococcus lactis. Applied Microbiology and Biotechnology, 2014, 98, 2507-2517.	3.6	22
167	Intravaginal administration of lactic acid bacteria modulated the incidence of purulent vaginal discharges, plasma haptoglobin concentrations, and milk production in dairy cows. Research in Veterinary Science, 2014, 96, 365-370.	1.9	27
168	Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiology, 2014, 42, 172-180.	4.2	97
169	Characterization of novel galactosylated chitin-oligosaccharides and chitosan-oligosaccharides. International Dairy Journal, 2014, 39, 330-335.	3.0	6
170	Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Research International, 2014, 65, 27-34.	6.2	81
171	Quantitative high-resolution melting PCR analysis for monitoring of fermentation microbiota in sourdough. International Journal of Food Microbiology, 2014, 186, 42-48.	4.7	36
172	Exopolysaccharides Synthesized by Lactobacillus reuteri Protect against Enterotoxigenic Escherichia coli in Piglets. Applied and Environmental Microbiology, 2014, 80, 5752-5760.	3.1	61
173	High-pressure and temperature effects on the inactivation of Bacillus amyloliquefaciens, alkaline phosphatase and storage stability of conjugated linoleic acid in milk. Innovative Food Science and Emerging Technologies, 2014, 26, 59-66.	5.6	13
174	Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiology, 2014, 37, 44-50.	4.2	107
175	Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 2014, 37, 2-10.	4.2	295
176	The Role of Intestinal Microbiota in Development of Irinotecan Toxicity and in Toxicity Reduction through Dietary Fibres in Rats. PLoS ONE, 2014, 9, e83644.	2.5	61
177	Chemically Defined Diet Alters the Protective Properties of Fructo-Oligosaccharides and Isomalto-Oligosaccharides in HLA-B27 Transgenic Rats. PLoS ONE, 2014, 9, e111717.	2.5	36
178	Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici. BMC Microbiology, 2013, 13, 19.	3.3	61
179	Fate of ACE-inhibitory peptides during the bread-making process: Quantification of peptides in sourdough, bread crumb, steamed bread and soda crackers. Journal of Cereal Science, 2013, 57, 514-519.	3.7	31
180	Metabolism of isomalto-oligosaccharides by <i>Lactobacillus reuteri</i> and bifidobacteria. Letters in Applied Microbiology, 2013, 57, 108-114.	2.2	41

#	Article	IF	CITATIONS
181	Barley malt wort fermentation by exopolysaccharide-forming <i>Weissella cibaria </i> MG1 for the production of a novel beverage. Journal of Applied Microbiology, 2013, 115, 1379-1387.	3.1	73
182	Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri. Food Microbiology, 2013, 36, 432-439.	4.2	24
183	Identification of Conjugated Linoleic Acid (CLA) Isomers by Silver Ion-Liquid Chromatography/In-line Ozonolysis/Mass Spectrometry (Ag ⁺ -LC/O ₃ -MS). Analytical Chemistry, 2013, 85, 7345-7352.	6.5	24
184	Physiology and Biochemistry of Lactic Acid Bacteria. , 2013, , 183-216.		13
185	Effects of nisin and reutericyclin on resistance of endospores of Clostridium spp. to heat and high pressure. Food Microbiology, 2013, 34, 46-51.	4.2	40
186	Dietary non-starch polysaccharides alter the abundance of pathogenic clostridia in pigs. Livestock Science, 2013, 152, 31-35.	1.6	3
187	Antifungal Lipids Produced by Lactobacilli and Their Structural Identification by Normal Phase LC/Atmospheric Pressure Photoionization–MS/MS. Journal of Agricultural and Food Chemistry, 2013, 61, 5338-5346.	5.2	19
188	Effect of egg white fermentation with lactobacilli on IgE binding ability of egg white proteins. Food Research International, 2013, 52, 359-366.	6.2	17
189	<i>In Situ</i> Determination of Clostridium Endospore Membrane Fluidity during Pressure-Assisted Thermal Processing in Combination with Nisin or Reutericyclin. Applied and Environmental Microbiology, 2013, 79, 2103-2106.	3.1	16
190	Antifungal Hydroxy Fatty Acids Produced during Sourdough Fermentation: Microbial and Enzymatic Pathways, and Antifungal Activity in Bread. Applied and Environmental Microbiology, 2013, 79, 1866-1873.	3.1	124
191	Environmental Particulate Matter Induces Murine Intestinal Inflammatory Responses and Alters the Gut Microbiome. PLoS ONE, 2013, 8, e62220.	2.5	210
192	High Pressure Inactivation of Escherichia coli, Campylobacter jejuni, and Spoilage Microbiota on Poultry Meat. Journal of Food Protection, 2012, 75, 497-503.	1.7	34
193	Inulin and fructo-oligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats. British Journal of Nutrition, 2012, 108, 1633-1643.	2.3	93
194	Oat β-Glucan and Dietary Calcium and Phosphorus Differentially Modify Intestinal Expression of Proinflammatory Cytokines and Monocarboxylate Transporter 1 and Cecal Morphology in Weaned Pigs. Journal of Nutrition, 2012, 142, 668-674.	2.9	53
195	Metabolism of Oligosaccharides and Starch in Lactobacilli: A Review. Frontiers in Microbiology, 2012, 3, 340.	3.5	334
196	Intestinal Origin of Sourdough <i>Lactobacillus reuteri</i> Isolates as Revealed by Phylogenetic, Genetic, and Physiological Analysis. Applied and Environmental Microbiology, 2012, 78, 6777-6780.	3.1	57
197	Structural Identification of Novel Oligosaccharides Produced by Lactobacillus bulgaricus and Lactobacillus plantarum. Journal of Agricultural and Food Chemistry, 2012, 60, 4886-4894.	5.2	28
198	Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose. International Dairy Journal, 2012, 22, 116-122.	3.0	120

#	Article	IF	CITATIONS
199	Nutrition and health aspects of lactose and its derivatives: State of the science. International Dairy Journal, 2012, 22, 87.	3.0	3
200	Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Research International, 2012, 46, 557-562.	6.2	112
201	Fast LC–MS analysis of gallotannins from mango (Mangifera indica L.) kernels and effects of methanolysis on their antibacterial activity and iron binding capacity. Food Research International, 2012, 45, 422-426.	6.2	27
202	Comparison of the impact of dextran and reuteran on the quality of wheat sourdough bread. Journal of Cereal Science, 2012, 56, 531-537.	3.7	49
203	Compatible solutes contribute to heat resistance and ribosome stability in Escherichia coli AW1.7. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1351-1357.	2.3	28
204	Use of the fluorescent probe LAURDAN to label and measure inner membrane fluidity of endospores of Clostridium spp Journal of Microbiological Methods, 2012, 91, 93-100.	1.6	23
205	Microbial ecology of sorghum sourdoughs: Effect of substrate supply and phenolic compounds on composition of fermentation microbiota. International Journal of Food Microbiology, 2012, 159, 240-246.	4.7	48
206	lrinotecan (CPT-11) Chemotherapy Alters Intestinal Microbiota in Tumour Bearing Rats. PLoS ONE, 2012, 7, e39764.	2.5	115
207	The effects of pure nucleotides on performance, humoral immunity, gut structure and numbers of intestinal bacteria of newly weaned pigs1. Journal of Animal Science, 2012, 90, 3126-3134.	0.5	37
208	Slowly digestible starch influences mRNA abundance of glucose and short-chain fatty acid transporters in the porcine distal intestinal tract1. Journal of Animal Science, 2012, 90, 80-82.	0.5	20
209	Effects of gallotannin treatment on attachment, growth, and survival of Escherichia coli O157:H7 and Listeria monocytogenes on spinach and lettuce. European Food Research and Technology, 2012, 234, 1081-1090.	3.3	12
210	Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by lactobacilli. Food Microbiology, 2012, 31, 278-284.	4.2	62
211	Fractionation and characterization of antioxidant peptides derived from barley glutelin by enzymatic hydrolysis. Food Chemistry, 2012, 134, 1509-1518.	8.2	154
212	Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. International Journal of Food Microbiology, 2012, 155, 105-112.	4.7	157
213	Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MS n and identification of compounds with antibacterial activity. European Food Research and Technology, 2012, 234, 535-542.	3.3	110
214	LC-MS/MS Quantification of Bioactive Angiotensin I-Converting Enzyme Inhibitory Peptides in Rye Malt Sourdoughs. Journal of Agricultural and Food Chemistry, 2011, 59, 11983-11989.	5.2	57
215	Proteolysis and Bioconversion of Cereal Proteins to Glutamate and γ-Aminobutyrate (GABA) in Rye Malt Sourdoughs. Journal of Agricultural and Food Chemistry, 2011, 59, 1392-1399.	5.2	49
216	Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears. Canadian Journal of Microbiology, 2011, 57, 177-185.	1.7	23

#	Article	IF	CITATIONS
217	Production of galactooligosaccharides and heterooligosaccharides with disrupted cell extracts and whole cells of lactic acid bacteria and bifidobacteria. International Dairy Journal, 2011, 21, 748-754.	3.0	23
218	Lactose and Oligosaccharides Lactose: Galacto-Oligosaccharides. , 2011, , 209-216.		2
219	Lactose and Oligosaccharides Lactose: Derivatives. , 2011, , 202-208.		7
220	Diet and Environment Shape Fecal Bacterial Microbiota Composition and Enteric Pathogen Load of Grizzly Bears. PLoS ONE, 2011, 6, e27905.	2.5	68
221	Dietary beta-fructans reduce inflammation in patients with mild to moderate Ulcerative Colitis. Inflammatory Bowel Diseases, 2011, 17, S25.	1.9	2
222	Characterization of an extremely heat-resistant Escherichia coli obtained from a beef processing facility. Journal of Applied Microbiology, 2011, 110, 840-849.	3.1	67
223	Influence of isomalto-oligosaccharides on intestinal microbiota in rats. Journal of Applied Microbiology, 2011, 110, 1297-1306.	3.1	76
224	Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. Journal of Applied Microbiology, 2011, 111, 1176-1184.	3.1	291
225	Lactic acid bacteria fermentation of human milk oligosaccharide components, human milk oligosaccharides and galactooligosaccharides. FEMS Microbiology Letters, 2011, 315, 141-148.	1.8	104
226	Dietary calcium phosphate content and oat β-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs. FEMS Microbiology Ecology, 2011, 75, 402-413.	2.7	92
227	Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiology, 2011, 28, 547-553.	4.2	72
228	Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. International Journal of Food Microbiology, 2011, 150, 115-121.	4.7	85
229	Influence of the soluble fibres inulin and oat β-glucan on quality of dough and bread. European Food Research and Technology, 2011, 232, 405-413.	3.3	156
230	Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Microbial Cell Factories, 2011, 10, S8.	4.0	95
231	Inhibitory Spectra and Modes of Antimicrobial Action of Gallotannins from Mango Kernels (<i>Mangifera indica</i> L.). Applied and Environmental Microbiology, 2011, 77, 2215-2223.	3.1	102
232	Solute Transport Proteins and the Outer Membrane Protein NmpC Contribute to Heat Resistance of Escherichia coli AW1.7. Applied and Environmental Microbiology, 2011, 77, 2961-2967.	3.1	24
233	Viscosity and Solubility of βâ€Glucan Extracted Under In Vitro Conditions from Barley βâ€Glucanâ€Fortified Bread and Evaluation of Loaf Characteristics. Cereal Chemistry, 2011, 88, 421-428.	2.2	2
234	Starch with High Amylose Content and Low In Vitro Digestibility Increases Intestinal Nutrient Flow and Microbial Fermentation and Selectively Promotes Bifidobacteria in Pigs. Journal of Nutrition, 2011, 141, 1273-1280.	2.9	102

#	Article	IF	CITATIONS
235	Heterologous expression of glycoside hydrolase family 2 and 42 β-galactosidases of lactic acid bacteria in Lactococcus lactis. Systematic and Applied Microbiology, 2010, 33, 300-307.	2.8	40
236	Highly efficient synthesis of exopolysaccharides by Lactobacillus curvatus DPPMA10 during growth in hydrolyzed wheat flour agar. International Journal of Food Microbiology, 2010, 141, 130-135.	4.7	31
237	Metabolic pathway of α-ketoglutarate in Lactobacillus sanfranciscensis and Lactobacillus reuteri during sourdough fermentation. Journal of Applied Microbiology, 2010, 109, 1301-1310.	3.1	21
238	Bacterial fermentation affects net mineral flux in the large intestine of pigs fed diets with viscous and fermentable nonstarch polysaccharides12. Journal of Animal Science, 2010, 88, 3351-3362.	0.5	20
239	Nonstarch Polysaccharides Modulate Bacterial Microbiota, Pathways for Butyrate Production, and Abundance of Pathogenic <i>Escherichia coli</i> in the Pig Gastrointestinal Tract. Applied and Environmental Microbiology, 2010, 76, 3692-3701.	3.1	116
240	Phenolic Acids and Flavonoids in Nonfermented and Fermented Red Sorghum (Sorghum bicolor (L.)) Tj ETQq0 0	0 rgBT /O√	erlock 10 Tf 5
241	Exopolysaccharide-Forming <i>Weissella</i> Strains as Starter Cultures for Sorghum and Wheat Sourdoughs. Journal of Agricultural and Food Chemistry, 2010, 58, 5834-5841.	5.2	191
242	Fractionation of Gallotannins from Mango (Mangifera indicaL.) Kernels by High-Speed Counter-Current Chromatography and Determination of Their Antibacterial Activity. Journal of Agricultural and Food Chemistry, 2010, 58, 775-780.	5.2	65
243	Dietary supplementation of viscous and fermentable non-starch polysaccharides (NSP) modulates microbial fermentation in pigs. Livestock Science, 2010, 133, 95-97.	1.6	5
244	Fermentation affects mineral flux in the gastrointestinal tract of pigs fed diets supplemented with different viscous and fermentable non-starch polysaccharides (NSP). Livestock Science, 2010, 134, 82-84.	1.6	1
245	Propionic acid production by cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in sourdough. Food Microbiology, 2010, 27, 390-395.	4.2	92
246	Exopolysaccharide Synthesized by <i>Lactobacillus reuteri</i> Decreases the Ability of Enterotoxigenic <i>Escherichia coli</i> To Bind to Porcine Erythrocytes. Applied and Environmental Microbiology, 2010, 76, 4863-4866.	3.1	58
247	Novel metabolites from cereal-associated lactobacilli – Novel functionalities for cereal products?. Food Microbiology, 2009, 26, 712-719.	4.2	31
248	Editorial. Food Microbiology, 2009, 26, 665.	4.2	3
249	From gene to function: Metabolic traits of starter cultures for improved quality of cereal foods. International Journal of Food Microbiology, 2009, 134, 29-36.	4.7	48
250	Prolamin Hydrolysis and Pentosan Solubilization in Germinated-Rye Sourdoughs Determined by Chromatographic and Immunological Methods. Journal of Agricultural and Food Chemistry, 2009, 57, 746-753.	5.2	45
251	Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears. Canadian Journal of Microbiology, 2009, 55, 1335-1346.	1.7	27
252	Antimicrobial Activity of Gallotannins Isolated from Mango (Mangifera indica L.) Kernels. Journal of Agricultural and Food Chemistry, 2009, 57, 7712-7718.	5.2	131

#	Article	IF	CITATIONS
253	Microbial and chemical analysis of a kvass fermentation. European Food Research and Technology, 2008, 227, 261-266.	3.3	51
254	Influence of Thiol Metabolism of Lactobacilli on Egg White Proteins in Wheat Sourdoughs. Journal of Agricultural and Food Chemistry, 2008, 56, 3357-3362.	5.2	22
255	Lactose: Crystallization, hydrolysis and value-added derivatives. International Dairy Journal, 2008, 18, 685-694.	3.0	245
256	Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science and Technology, 2008, 19, 513-521.	15.1	281
257	Formation of Oligosaccharides and Polysaccharides by <i>Lactobacillus reuteri</i> LTH5448 and <i>Weissella cibaria</i> 10M in Sorghum Sourdoughs. Cereal Chemistry, 2008, 85, 679-684.	2.2	110
258	Influence of pH on the Formation of Glucan by <i>Lactobacillus reuteri</i> TMW 1.106 Exerting a Protective Function Against Extreme pH Values. Food Biotechnology, 2008, 22, 398-418.	1.5	34
259	Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology (United Kingdom), 2008, 154, 72-80.	1.8	130
260	Proteomic Approach for Characterization of Hop-Inducible Proteins in Lactobacillus brevis. Applied and Environmental Microbiology, 2007, 73, 3300-3306.	3.1	51
261	Glutathione Reductase from Lactobacillus sanfranciscensis DSM20451 T : Contribution to Oxygen Tolerance and Thiol Exchange Reactions in Wheat Sourdoughs. Applied and Environmental Microbiology, 2007, 73, 4469-4476.	3.1	98
262	Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology, 2007, 55, 108-114.	0.7	122
263	Data mining and fuzzy modelling of high pressure inactivation pathways of Lactococcus lactis. Innovative Food Science and Emerging Technologies, 2007, 8, 461-468.	5.6	24
264	Glutamine deamidation by cereal-associated lactic acid bacteria. Journal of Applied Microbiology, 2007, 103, 1197-1205.	3.1	57
265	Third International Symposium on Sourdough: From Tradition to Innovation. Food Microbiology, 2007, 24, 113.	4.2	3
266	Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiology, 2007, 24, 128-138.	4.2	300
267	Sourdough applications for bread production: Industrial perspectives. Food Microbiology, 2007, 24, 149.	4.2	4
268	Sucrose utilization and impact of sucrose on glycosyltransferase expression in Lactobacillus reuteri. Systematic and Applied Microbiology, 2007, 30, 433-443.	2.8	61
269	Reduction of (E)-2-nonenal and (E,E)-2,4-decadienal during sourdough fermentation. Journal of Cereal Science, 2007, 45, 78-87.	3.7	76
270	Sourdough Symposium Report. Cereal Foods World, 2007, , .	0.2	0

#	Article	IF	CITATIONS
271	Glucan and Fructan Production by Sourdough <i>Weissella cibaria</i> and <i>Lactobacillus plantarum</i> . Journal of Agricultural and Food Chemistry, 2006, 54, 9873-9881.	5.2	141
272	Influence of Peptide Supply and Cosubstrates on Phenylalanine Metabolism ofLactobacillus sanfranciscensisDSM20451TandLactobacillus plantarumTMW1.468. Journal of Agricultural and Food Chemistry, 2006, 54, 3832-3839.	5.2	109
273	Protection by sucrose against heat-induced lethal and sublethal injury of Lactococcus lactis: An FT-IR study. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1188-1197.	2.3	34
274	Combined high pressure and temperature induced lethal and sublethal injury of Lactococcus lactis—Application of multivariate statistical analysis. International Journal of Food Microbiology, 2006, 109, 25-33.	4.7	23
275	Effect of membrane lateral pressure on the expression of fructosyltransferases in Lactobacillus reuteri. Systematic and Applied Microbiology, 2006, 29, 89-99.	2.8	42
276	Influence of redox-reactions catalysed by homo- and hetero-fermentative lactobacilli on gluten in wheat sourdoughs. Journal of Cereal Science, 2006, 43, 137-143.	3.7	41
277	Experimental and numerical study of heterogeneous pressure-temperature-induced lethal and sublethal injury ofLactococcus Lactis in a medium scale high-pressure autoclave. Biotechnology and Bioengineering, 2006, 94, 655-666.	3.3	13
278	Lactobacillus nantensis sp. nov., isolated from French wheat sourdough. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 587-591.	1.7	51
279	Characterization of a Highly Hop-Resistant Lactobacillus brevis Strain Lacking Hop Transport. Applied and Environmental Microbiology, 2006, 72, 6483-6492.	3.1	74
280	High-Pressure-Mediated Survival of Clostridium botulinum and Bacillus amyloliquefaciens Endospores at High Temperature. Applied and Environmental Microbiology, 2006, 72, 3476-3481.	3.1	198
281	Extracellular homopolysaccharides and oligosaccharides from intestinal lactobacilli. Journal of Applied Microbiology, 2005, 99, 692-702.	3.1	49
282	A fuzzy logic-based model for the multistage high-pressure inactivation of ssp. MG 1363. International Journal of Food Microbiology, 2005, 98, 89-105.	4.7	32
283	Differential inactivation of glucose- and glutamate dependent acid resistance of Escherichia coli TMW 2.497 by high-pressure treatments. Systematic and Applied Microbiology, 2005, 28, 663-671.	2.8	12
284	Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Applied Microbiology and Biotechnology, 2005, 66, 655-663.	3.6	103
285	Lactobacillus hammesii sp. nov., isolated from French sourdough. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 763-767.	1.7	66
286	Functional Characterization of the Proteolytic System of Lactobacillus sanfranciscensis DSM 20451 T during Growth in Sourdough. Applied and Environmental Microbiology, 2005, 71, 6260-6266.	3.1	71
287	Evidence for Formation of Heterooligosaccharides byLactobacillus sanfranciscensisduring Growth in Wheat Sourdough. Journal of Agricultural and Food Chemistry, 2005, 53, 2456-2461.	5.2	43
288	Exopolysaccharides from cereal-associated lactobacilli. Trends in Food Science and Technology, 2005, 16, 79-84.	15.1	142

#	Article	IF	CITATIONS
289	Second International Symposium on Sourdough: from Fundamentals to Applications. Trends in Food Science and Technology, 2005, 16, 2-3.	15.1	7
290	Comparison of Pressure and Heat Resistance of Clostridium botulinum and Other Endospores in Mashed Carrots. Journal of Food Protection, 2004, 67, 2530-2538.	1.7	131
291	Protective Effect of Sucrose and Sodium Chloride for Lactococcus lactis during Sublethal and Lethal High-Pressure Treatments. Applied and Environmental Microbiology, 2004, 70, 2013-2020.	3.1	160
292	Pressure Inactivation of Bacillus Endospores. Applied and Environmental Microbiology, 2004, 70, 7321-7328.	3.1	136
293	Effects of process parameters on growth and metabolism of Lactobacillus sanfranciscensis and Candida humilis during rye sourdough fermentation. European Food Research and Technology, 2004, 218, 333-338.	3.3	64
294	Reutericyclin: biological activity, mode of action, and potential applications. Applied Microbiology and Biotechnology, 2004, 64, 326-332.	3.6	112
295	Gluten Hydrolysis and Depolymerization during Sourdough Fermentation. Journal of Agricultural and Food Chemistry, 2004, 52, 1307-1314.	5.2	133
296	Effects of pressure on cell morphology and cell division of lactic acid bacteria. Extremophiles, 2003, 7, 511-516.	2.3	30
297	Contribution of reutericyclin production to the stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation. International Journal of Food Microbiology, 2003, 80, 31-45.	4.7	109
298	Fluorescence Labeling of Wheat Proteins for Determination of Gluten Hydrolysis and Depolymerization during Dough Processing and Sourdough Fermentation. Journal of Agricultural and Food Chemistry, 2003, 51, 2745-2752.	5.2	56
299	In Situ Production of Exopolysaccharides during Sourdough Fermentation by Cereal and Intestinal Isolates of Lactic Acid Bacteria. Applied and Environmental Microbiology, 2003, 69, 945-952.	3.1	198
300	Exopolysaccharide and Kestose Production by Lactobacillus sanfranciscensis LTH2590. Applied and Environmental Microbiology, 2003, 69, 2073-2079.	3.1	113
301	Studies on the Mode of Action of Reutericyclin. Applied and Environmental Microbiology, 2003, 69, 1305-1307.	3.1	65
302	Baroprotective Effect of Sucrose and NaCl on Lactococcus lactis. , 2003, , 255-258.		0
303	In Situ Determination of the Intracellular pH of Lactococcus lactis and Lactobacillus plantarum during Pressure Treatment. Applied and Environmental Microbiology, 2002, 68, 4399-4406.	3.1	101
304	Effect of sucrose and sodium chloride on the survival and metabolic activity of Lactococcus lactis under high-pressure conditions. Progress in Biotechnology, 2002, , 295-302.	0.2	11
305	Effect of compressed gases on the high pressure inactivation of Lactobacillus plantarum TMW 1.460. Progress in Biotechnology, 2002, 19, 317-324.	0.2	5
306	Contribution of Sourdough Lactobacilli, Yeast, and Cereal Enzymes to the Generation of Amino Acids in Dough Relevant for Bread Flavor. Cereal Chemistry, 2002, 79, 45-51.	2.2	292

#	Article	IF	CITATIONS
307	Metabolism of Lactobacillus sanfranciscensis under high pressure: investigations using stable carbon isotopes. Progress in Biotechnology, 2002, , 287-294.	0.2	6
308	Effects of Pressure-Induced Membrane Phase Transitions on Inactivation of HorA, an ATP-Dependent Multidrug Resistance Transporter, in Lactobacillus plantarum. Applied and Environmental Microbiology, 2002, 68, 1088-1095.	3.1	105
309	Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. Journal of Applied Microbiology, 2002, 92, 958-965.	3.1	204
310	Effects of pulsed electric fields on inactivation and metabolic activity of Lactobacillus plantarum in model beer. Journal of Applied Microbiology, 2002, 93, 326-335.	3.1	106
311	Sample preparation for amino acid determination by integrated pulsed amperometric detection in foods. Analytical Biochemistry, 2002, 310, 171-178.	2.4	35
312	Development and potential of starter lactobacilli resulting from exploration of the sourdough ecosystem. Antonie Van Leeuwenhoek, 2002, 81, 631-638.	1.7	58
313	Sucrose Metabolism and Exopolysaccharide Production in Wheat and Rye Sourdoughs byLactobacillus sanfranciscensis. Journal of Agricultural and Food Chemistry, 2001, 49, 5194-5200.	5.2	130
314	Metabolic and Functional Properties of Lactic Acid Bacteria in the Gastro-intestinal Ecosystem: A comparative in vitro Studybetween Bacteria of Intestinal and Fermented Food Origin. Systematic and Applied Microbiology, 2001, 24, 218-226.	2.8	103
315	On-line Fluorescence Determination of Pressure Mediated Outer Membrane Damage in Escherichia coli. Systematic and Applied Microbiology, 2001, 24, 477-485.	2.8	57
316	The First Low Molecular Weight Antibiotic from Lactic Acid Bacteria: Reutericyclin, a New Tetramic Acid. Angewandte Chemie - International Edition, 2000, 39, 2766-2768.	13.8	128
317	Effects of High Pressure on Survival and Metabolic Activity of Lactobacillus plantarum TMW1.460. Applied and Environmental Microbiology, 2000, 66, 3966-3973.	3.1	125
318	Characterization of Reutericyclin Produced by Lactobacillus reuteri LTH2584. Applied and Environmental Microbiology, 2000, 66, 4325-4333.	3.1	182
319	Non-dairy lactic fermentations: the cereal world*. Antonie Van Leeuwenhoek, 1999, 76, 403-411.	1.7	150
320	Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. International Journal of Food Microbiology, 1999, 46, 207-217.	4.7	164
321	Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine. International Journal of Food Microbiology, 1999, 48, 21-35.	4.7	82
322	Resistance of Escherichia coli and Salmonella against nisin and curvacin A. International Journal of Food Microbiology, 1999, 48, 37-50.	4.7	58
323	Physiological Diversity Among Strains of Tetragenococcus halophilus. Systematic and Applied Microbiology, 1998, 21, 107-112.	2.8	21

Pressure and Heat Resistance of Clostridium Botulinum and Other Endospores. , 0, , 95-114.

3

#	Article	IF	CITATIONS
325	Fermented Foods. , 0, , 855-900.		9