Youguo Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7646315/publications.pdf

Version: 2024-02-01

44 papers 1,301 citations

16 h-index 35 g-index

44 all docs

44 docs citations

44 times ranked 1505 citing authors

#	Article	IF	CITATIONS
1	High-efficiency one-step microwave method for high-performance biomass-based hierarchical porous carbon. Biomass Conversion and Biorefinery, 2024, 14, 3827-3837.	4.6	1
2	Toward Enhanced Electrochemical Performance by Investigation of the Electrochemical Reconstruction Mechanism in Co ₂ V ₂ O ₇ Hexagonal Nanosheets for Hybrid Supercapacitors. ACS Applied Materials & Supercapacitors.	8.0	9
3	Phosphorization-Introduced Defect-Rich Phosphorus-Doped Co ₃ O ₄ with Propelling Adsorption–Catalysis Transformation of Polysulfide. Energy & amp; Fuels, 2022, 36, 3339-3346.	5.1	5
4	Nickel Acetate-Assisted Graphitization of Porous Activated Carbon at Low Temperature for Supercapacitors With High Performances. Frontiers in Chemistry, 2022, 10, 828381.	3.6	1
5	Preparation of graphene/copper composites with a thiophenol molecular junction for thermal conduction application. New Journal of Chemistry, 2022, 46, 10107-10116.	2.8	3
6	Constructing Flexible Allâ€Solidâ€State Supercapacitors from 3D Nanosheets Active Bricks via 3D Manufacturing Technology: A Perspective Review. Advanced Functional Materials, 2022, 32, .	14.9	33
7	Sr-Based Sub/Surface Integrated Layer and Bulk Doping to Enhance High-Voltage Cycling of a Ni-Rich Cathode Material. ACS Sustainable Chemistry and Engineering, 2022, 10, 7883-7895.	6.7	11
8	A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. Journal of Hazardous Materials, 2021, 410, 124610.	12.4	72
9	Synergy ascension of SnS/MoS ₂ binary metal sulfides on initial coulombic efficiency and stable capacity for lithium storage. RSC Advances, 2021, 11, 17332-17339.	3.6	6
10	Diatomite waste derived N-doped porous carbon for applications in the oxygen reduction reaction and supercapacitors. Nanoscale Advances, 2021, 3, 3860-3866.	4.6	4
11	Control of the interface graphitized/amorphous carbon of biomass-derived carbon microspheres for symmetric supercapacitors. Nanoscale Advances, 2021, 3, 4858-4865.	4.6	14
12	Y–F co-doping behavior of LiFePO ₄ /C nanocomposites for high-rate lithium-ion batteries. New Journal of Chemistry, 2021, 45, 5695-5703.	2.8	18
13	Hierarchical Fe ₂ O ₃ @MoS ₂ /C Nanorods as Anode Materials for Sodium Ion Batteries with High Cycle Stability. ACS Applied Energy Materials, 2021, 4, 3757-3765.	5.1	12
14	Microwave-Assisted Preparation of Hierarchical N and O Co-Doped Corn-Cob-Derived Activated Carbon for a High-Performance Supercapacitor. Energy & Energy & 2021, 35, 8334-8344.	5.1	19
15	Stabilized Cathode Interphase for Enhancing Electrochemical Performance of LiNi _{0.5} Mn _{1.5} O ₄ -Based Lithium-Ion Battery via <i>cis</i> -1,2,3,6-Tetrahydrophthalic Anhydride. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18314-18323.	8.0	21
16	Phase Compatible NiFe ₂ O ₄ Coating Tunes Oxygen Redox in Li-Rich Layered Oxide. ACS Nano, 2021, 15, 11607-11618.	14.6	95
17	Bifunctional Surface Coating of LiAlO ₂ 1â€" <i>x</i> 13€" <i>x</i> 10 ₄ 0 ₂ Hybrid Layer on Ni-Rich Cathode Materials for High Performance Lithium-lon Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 8951-8961.	6.7	8
18	Boron and Nitrogen Co-doped Molybdenum Carbide Nanostructures for Oxygen Reduction Electrocatalysis. ACS Applied Nano Materials, 2021, 4, 8897-8905.	5.0	9

#	Article	IF	CITATIONS
19	Application of H4P2O7 as leaching acid in one-step selective recovery for metals from spent LiFePO4 batteries. Ionics, 2021, 27, 5127-5135.	2.4	10
20	Strongly Coupled MnO ₂ Nanosheets/Silver Nanoparticles Hierarchical Spheres for Efficient Oxygen Reduction Reaction Electrocatalysis. Energy & Ene	5.1	4
21	Phenylamine-Functionalized Graphene–Copper Composites with High Thermal Conductivity: Implications for Thermal Dissipation. ACS Applied Nano Materials, 2021, 4, 12170-12179.	5.0	4
22	Novel Bi, BiSn, Bi ₂ Sn, Bi ₃ Sn, and Bi ₄ Sn Catalysts for Efficient Electroreduction of CO ₂ to Formic Acid. Industrial & Engineering Chemistry Research, 2020, 59, 6806-6814.	3.7	32
23	Prepotassiated V ₂ O ₅ as the Cathode Material for Highâ€Voltage Potassiumâ€Ion Batteries. Energy Technology, 2020, 8, 1900796.	3.8	27
24	TiO2 Nanosheet-Redox Graphene Oxide/Sulphur Cathode for High-Performance Lithium-Sulphur Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 1715-1722.	0.9	1
25	Short-range amorphous carbon nanosheets for oxygen reduction electrocatalysis. Nanoscale Advances, 2020, 2, 5769-5776.	4.6	4
26	Constructing an interface synergistic effect from a SnS/MoS ₂ heterojunction decorating N, S co-doped carbon nanosheets with enhanced sodium ion storage performance. Journal of Materials Chemistry A, 2020, 8, 22593-22600.	10.3	58
27	Stable surface construction of the Ni-rich LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ cathode material for high performance lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 21649-21660.	10.3	54
28	FeSe ₂ @C Microrods as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries. ACS Nano, 2020, 14, 17683-17692.	14.6	140
29	Interface-tuned Mo-based nanospheres for efficient oxygen reduction and hydrogen evolution catalysis. Catalysis Science and Technology, 2020, 10, 6713-6722.	4.1	1
30	Phosphorus/nitrogen co-doped and bimetallic MOF-derived cathode for all-solid-state rechargeable zinc–air batteries. RSC Advances, 2020, 10, 33327-33333.	3.6	11
31	Enhancing the Electrochemical Performance of a Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Cathode in a Carbonateâ€Based Electrolyte with a Novel and Lowâ€Cost Functional Additive. Chemistry - A European Journal, 2020, 26, 12233-12241.	3.3	10
32	Ultrathin Al2O3 layer modified LiNi0.6Co0.2Mn0.2O2 with Al-doping for high performance lithium ion batteries. Ionics, 2020, 26, 2147-2156.	2.4	15
33	Innovative Electrochemical Strategy to Recovery of Cathode and Efficient Lithium Leaching from Spent Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4767-4776.	5.1	54
34	Highly efficient and durable aqueous electrocatalytic reduction of CO ₂ to HCOOH with a novel bismuth–MOF: experimental and DFT studies. Journal of Materials Chemistry A, 2020, 8, 9776-9787.	10.3	73
35	Insight of a Phase Compatible Surface Coating for Longâ€Durable Liâ€Rich Layered Oxide Cathode. Advanced Energy Materials, 2019, 9, 1901795.	19.5	129
36	Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochemical Energy Reviews, 2019, 2, 518-538.	25.5	176

Youguo Huang

#	Article	lF	CITATION
37	Zinc-assisted mechanochemical coating of a reduced graphene oxide thin layer on silicon microparticles to achieve efficient lithium-ion battery anodes. Sustainable Energy and Fuels, 2019, 3, 1258-1268.	4.9	5
38	Synthesis of FeS Nanoparticles Embedded in MoS ₂ /C Nanosheets as Highâ€Performance Anode Material for Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1801132.	3.8	5
39	Ultra-high-voltage capacitor based on aluminum electrolytic–electrochemical hybrid electrodes. Journal of Materials Science, 2018, 53, 6842-6849.	3.7	4
40	Electrospray synthesis of nano-Si encapsulated in graphite/carbon microplates as robust anodes for high performance lithium-ion batteries. Sustainable Energy and Fuels, 2018, 2, 679-687.	4.9	25
41	Electroless plating of a Sn–Ni/graphite sheet composite with improved cyclability as an anode material for lithium ion batteries. RSC Advances, 2018, 8, 15427-15435.	3.6	10
42	Three-Dimension Hierarchical Al ₂ O ₃ Nanosheets Wrapped LiMn ₂ O ₄ with Enhanced Cycling Stability as Cathode Material for Lithium Ion Batteries. ACS Applied Materials & Discrete Samp; Interfaces, 2016, 8, 21656-21665.	8.0	86
43	Facile synthesis of Sn/MoS2/C composite as an anode material for lithium-ion batteries with outstanding performance. New Journal of Chemistry, 2016, 40, 1263-1268.	2.8	8
44	Enhanced electrochemical performance of LiMn ₂ O ₄ cathode with a Li _{0.34} La _{0.51} TiO ₃ -coated layer. RSC Advances, 2015, 5, 17592-17600.	3.6	14