
Stefano Sabatini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7646305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of 2-Phenylquinolines with Broad-Spectrum Anti-coronavirus Activity. ACS Medicinal Chemistry Letters, 2022, 13, 855-864.	1.3	10
2	Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. European Journal of Medicinal Chemistry, 2021, 210, 112992.	2.6	6
3	Synthesis and characterization of 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase. European Journal of Medicinal Chemistry, 2021, 209, 112944.	2.6	17
4	Biofunctionalization of Poly(lactide-co-glycolic acid) Using Potent NorA Efflux Pump Inhibitors Immobilized on Nanometric Alpha-Zirconium Phosphate to Reduce Biofilm Formation. Materials, 2021, 14, 670.	1.3	4
5	Ethidium bromide exposure unmasks an antibiotic efflux system in <i>Rhodococcus equi</i> . Journal of Antimicrobial Chemotherapy, 2021, 76, 2040-2048.	1.3	3
6	From Quinoline to Quinazolineâ€Based S. aureus NorA Efflux Pump Inhibitors by Coupling a Focused Scaffold Hopping Approach and a Pharmacophore Search. ChemMedChem, 2021, 16, 3044-3059.	1.6	9
7	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	13.8	439
8	Microbial Efflux Pump Inhibitors: A Journey around Quinoline and Indole Derivatives. Molecules, 2021, 26, 6996.	1.7	14
9	Structural Modifications of the Quinolin-4-yloxy Core to Obtain New Staphylococcus aureus NorA Inhibitors. International Journal of Molecular Sciences, 2020, 21, 7037.	1.8	8
10	Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors. European Journal of Medicinal Chemistry, 2020, 201, 112420.	2.6	12
11	1,2,4-Triazolo[1,5-a]pyrimidines as a Novel Class of Inhibitors of the HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity. Molecules, 2020, 25, 1183.	1.7	23
12	Pyridobenzothiazolones Exert Potent Anti-Dengue Activity by Hampering Multiple Functions of NS5 Polymerase. ACS Medicinal Chemistry Letters, 2020, 11, 773-782.	1.3	28
13	C-2 phenyl replacements to obtain potent quinoline-based <i>Staphylococcus aureus</i> NorA inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 584-597.	2.5	13
14	Deciphering the Molecular Recognition Mechanism of Multidrug Resistance Staphylococcus aureus NorA Efflux Pump Using a Supervised Molecular Dynamics Approach. International Journal of Molecular Sciences, 2019, 20, 4041.	1.8	18
15	Discovery of potent p38α MAPK inhibitors through a funnel like workflow combining in silico screening and inÂvitro validation. European Journal of Medicinal Chemistry, 2019, 182, 111624.	2.6	17
16	Modifications on C6 and C7 Positions of 3-Phenylquinolone Efflux Pump Inhibitors Led to Potent and Safe Antimycobacterial Treatment Adjuvants. ACS Infectious Diseases, 2019, 5, 982-1000.	1.8	10
17	Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Research, 2019, 167, 6-12.	1.9	24
18	Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Research International, 2019, 115, 319-327.	2.9	120

STEFANO SABATINI

#	Article	IF	CITATIONS
19	From cycloheptathiophene-3-carboxamide to oxazinone-based derivatives as allosteric HIV-1 ribonuclease H inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 55-74.	2.5	16
20	Functionalized 2,1-benzothiazine 2,2-dioxides as new inhibitors of Dengue NS5 RNA-dependent RNA polymerase. European Journal of Medicinal Chemistry, 2018, 143, 1667-1676.	2.6	24
21	2-Phenylquinoline <i>S. aureus</i> NorA Efflux Pump Inhibitors: Evaluation of the Importance of Methoxy Group Introduction. Journal of Medicinal Chemistry, 2018, 61, 7827-7848.	2.9	46
22	Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: New insights on the C-6 position. European Journal of Medicinal Chemistry, 2018, 155, 428-433.	2.6	19
23	Pharmacophore-Based Repositioning of Approved Drugs as Novel <i>Staphylococcus aureus</i> NorA Efflux Pump Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 1598-1604.	2.9	59
24	Searching for Novel Inhibitors of the <i>S.â€aureus</i> NorA Efflux Pump: Synthesis and Biological Evaluation of the 3â€Phenylâ€1,4â€benzothiazine Analogues. ChemMedChem, 2017, 12, 1293-1302.	1.6	28
25	Efficient and regioselective one-step synthesis of 7-aryl-5-methyl- and 5-aryl-7-methyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidine derivatives. Organic and Biomolecular Chemistry, 2017, 15, 7944-7955.	1.5	31
26	Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium. European Journal of Medicinal Chemistry, 2017, 140, 321-330.	2.6	28
27	Investigation on the effect of known potent S. aureus NorA efflux pump inhibitors on the staphylococcal biofilm formation. RSC Advances, 2017, 7, 37007-37014.	1.7	33
28	Mode of action of the 2-phenylquinoline efflux inhibitor PQQ4R against <i>Escherichia coli</i> . PeerJ, 2017, 5, e3168.	0.9	38
29	The "racemic approach―in the evaluation of the enantiomeric NorA efflux pump inhibition activity of 2-phenylquinoline derivatives. Journal of Pharmaceutical and Biomedical Analysis, 2016, 129, 182-189.	1.4	14
30	Studies on Cycloheptathiopheneâ€3â€carboxamide Derivatives as Allosteric HIVâ€1 Ribonucleaseâ€H Inhibitors. ChemMedChem, 2016, 11, 1709-1720.	1.6	15
31	p38α MAPK and Type I Inhibitors: Binding Site Analysis and Use of Target Ensembles in Virtual Screening. Molecules, 2015, 20, 15842-15861.	1.7	14
32	The Pyrazolobenzothiazine Core as a New Chemotype of p38 Alpha Mitogenâ€Activated Protein Kinase Inhibitors. Chemical Biology and Drug Design, 2015, 86, 531-545.	1.5	14
33	Boosting Effect of 2-Phenylquinoline Efflux Inhibitors in Combination with Macrolides against <i>Mycobacterium smegmatis</i> and <i>Mycobacterium avium</i> . ACS Infectious Diseases, 2015, 1, 593-603.	1.8	21
34	Efficient microwave assisted synthesis of metal–organic framework UiO-66: optimization and scale up. Dalton Transactions, 2015, 44, 14019-14026.	1.6	104
35	A Broad Anti-influenza Hybrid Small Molecule That Potently Disrupts the Interaction of Polymerase Acidic Protein–Basic Protein 1 (PA-PB1) Subunits. Journal of Medicinal Chemistry, 2015, 58, 3830-3842.	2.9	81
36	Investigation of targeted pyrrolizidine alkaloids in traditional Chinese medicines and selected herbal teas sourced in Ireland using LC-ESI-MS/MS. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 940-961.	1.1	40

STEFANO SABATINI

#	Article	IF	CITATIONS
37	Accounting for Target Flexibility and Water Molecules by Docking to Ensembles of Target Structures: The HCV NS5B Palm Site I Inhibitors Case Study. Journal of Chemical Information and Modeling, 2014, 54, 481-497.	2.5	16
38	New Pyrazolobenzothiazine Derivatives as Hepatitis C Virus NS5B Polymerase Palm Site I Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 3247-3262.	2.9	35
39	The Versatile Nature of the 6-Aminoquinolone Scaffold: Identification of Submicromolar Hepatitis C Virus NS5B Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 1952-1963.	2.9	43
40	The use of a rigid tritopic phosphonic ligand for the synthesis of a robust honeycomb-like layered zirconium phosphonate framework. Chemical Communications, 2014, 50, 5737-5740.	2.2	54
41	Ethyl 1,8-Naphthyridone-3-carboxylates Downregulate Human Papillomavirus-16 E6 and E7 Oncogene Expression. Journal of Medicinal Chemistry, 2014, 57, 5649-5663.	2.9	9
42	1,4-Benzothiazine ATP-Sensitive Potassium Channel Openers: Modifications at the C-2 and C-6 Positions. Journal of Medicinal Chemistry, 2013, 56, 4718-4728.	2.9	20
43	Structural Investigation of Cycloheptathiophene-3-carboxamide Derivatives Targeting Influenza Virus Polymerase Assembly. Journal of Medicinal Chemistry, 2013, 56, 10118-10131.	2.9	51
44	Computerâ€Aided Design, Synthesis and Validation of 2â€Phenylquinazolinone Fragments as CDK9 Inhibitors with Antiâ€HIVâ€I Tatâ€Mediated Transcription Activity. ChemMedChem, 2013, 8, 1941-1953.	1.6	32
45	Structure-Based Discovery of Pyrazolobenzothiazine Derivatives As Inhibitors of Hepatitis C Virus Replication. Journal of Medicinal Chemistry, 2013, 56, 2270-2282.	2.9	40
46	Re-evolution of the 2-Phenylquinolines: Ligand-Based Design, Synthesis, and Biological Evaluation of a Potent New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors to Combat Antimicrobial Resistance. Journal of Medicinal Chemistry, 2013, 56, 4975-4989.	2.9	51
47	Design, Synthesis, and Evaluation of WC5 Analogues as Inhibitors of Human Cytomegalovirus Immediateâ€Earlyâ€2 Protein, a Promising Target for Antiâ€HCMV Treatment. ChemMedChem, 2013, 8, 1403-1	1414.	18
48	Blocking HIV-1 Replication by Targeting the Tat-Hijacked Transcriptional Machinery. Current Pharmaceutical Design, 2013, 19, 1860-1879.	0.9	31
49	6â€Hydrogenâ€8â€Methylquinolones Active Against Replicating and Nonâ€replicating <i>Mycobacterium tuberculosis</i> . Chemical Biology and Drug Design, 2012, 80, 781-786.	1.5	13
50	Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and <i>S. aureus</i> NorA. ACS Medicinal Chemistry Letters, 2012, 3, 248-251.	1.3	20
51	Pyrazolo[4,3- <i>c</i>][1,2]benzothiazines 5,5-Dioxide: A Promising New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 3568-3572.	2.9	82
52	Searching for innovative quinolone-like scaffolds: synthesis and biological evaluation of 2,1-benzothiazine 2,2-dioxide derivatives. MedChemComm, 2012, 3, 1092.	3.5	20
53	Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase. Bioorganic and Medicinal Chemistry, 2012, 20, 866-876.	1.4	41
54	Discovery of Novel Inhibitors of the NorA Multidrug Transporter of <i>Staphylococcus aureus</i> . Journal of Medicinal Chemistry, 2011, 54, 354-365.	2.9	67

STEFANO SABATINI

#	Article	IF	CITATIONS
55	Evolution from a Natural Flavones Nucleus to Obtain 2-(4-Propoxyphenyl)quinoline Derivatives As Potent Inhibitors of the <i>S. aureus</i> NorA Efflux Pump. Journal of Medicinal Chemistry, 2011, 54, 5722-5736.	2.9	102
56	Structural Investigation of the Naphthyridone Scaffold: Identification of a 1,6â€Naphthyridone Derivative with Potent and Selective Antiâ€HIV Activity. ChemMedChem, 2011, 6, 1249-1257.	1.6	30
57	Effects of K _{ATP} openers on the QT prolongation induced by HERG-blocking drugs in guinea-pigs. Journal of Pharmacy and Pharmacology, 2010, 62, 924-930.	1.2	14
58	From 6-Aminoquinolone Antibacterials to 6-Amino-7-thiopyranopyridinylquinolone Ethyl Esters as Inhibitors of <i>Staphylococcus aureus</i> Multidrug Efflux Pumps. Journal of Medicinal Chemistry, 2010, 53, 4466-4480.	2.9	41
59	A 1,8-Naphthyridone Derivative Targets the HIV-1 Tat-Mediated Transcription and Potently Inhibits the HIV-1 Replication. Journal of Medicinal Chemistry, 2010, 53, 641-648.	2.9	122
60	Synthesis of 2-(Arylamino)ethanethiols via Lewis Acid Catalyzed Aminolysis of 2,2-Dimethylthiirane as Precursors of the 1,4-Benzothiazine Nucleus. Synthesis, 2009, 2009, 1513-1519.	1.2	2
61	2â€Phenylquinolones as Inhibitors of the HIVâ€1 Tat–TAR Interaction. ChemMedChem, 2009, 4, 935-938.	1.6	18
62	Studies on anti-HIV quinolones: New insights on the C-6 position. Bioorganic and Medicinal Chemistry, 2009, 17, 667-674.	1.4	32
63	Synthesis and biological evaluation of 2-phenylquinolones targeted at Tat/TAR recognition. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 714-717.	1.0	21
64	Structureâ^'Activity Relationship Study on Anti-HIV 6-Desfluoroquinolones. Journal of Medicinal Chemistry, 2008, 51, 5454-5458.	2.9	56
65	From Phenothiazine to 3-Phenyl-1,4-benzothiazine Derivatives as Inhibitors of the <i>Staphylococcus aureus</i> NorA Multidrug Efflux Pump. Journal of Medicinal Chemistry, 2008, 51, 4321-4330.	2.9	105
66	Novel 1,4-Benzothiazine Derivatives as Large Conductance Ca2+-Activated Potassium Channel Openers. Journal of Medicinal Chemistry, 2008, 51, 5085-5092.	2.9	29
67	Synthesis and Anti-BVDV Activity of Acridones As New Potential Antiviral Agents1. Journal of Medicinal Chemistry, 2006, 49, 2621-2627.	2.9	71
68	From Cromakalim to Different Structural Classes of KATP Channel Openers. Current Topics in Medicinal Chemistry, 2006, 6, 1049-1068.	1.0	19
69	Binding studies and GRIND/ALMOND-based 3D QSAR analysis of benzothiazine type KATP-channel openers. Bioorganic and Medicinal Chemistry, 2005, 13, 5581-5591.	1.4	21
70	Structure Modifications of 6-Aminoquinolones with Potent Anti-HIV Activity1. Journal of Medicinal Chemistry, 2004, 47, 5567-5578.	2.9	45
71	Highly Potent 1,4-Benzothiazine Derivatives as KATP-Channel Openers. Journal of Medicinal Chemistry, 2003, 46, 3670-3679.	2.9	48
72	Studies on 6-Aminoquinolones: synthesis and antibacterial evaluation of 6-amino-8-ethyl- and 6-amino-8-methoxyquinolones. Bioorganic and Medicinal Chemistry, 1999, 7, 2465-2471.	1.4	19

#	Article	IF	CITATIONS
73	Design and Synthesis of Modified Quinolones as Antitumoral Acridones. Journal of Medicinal Chemistry, 1999, 42, 2136-2144.	2.9	34
74	Dibenzo[1,6]naphthyridindiones as modified quinolone antibacterials. European Journal of Medicinal Chemistry, 1998, 33, 899-903.	2.6	8