Omar Ismail

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7645802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A perspective on enantioselective chromatography by comparing ultra-high performance supercritical fluid chromatography and normal-phase liquid chromatography through the use of a Pirkle-type stationary phase. TrAC - Trends in Analytical Chemistry, 2022, 147, 116511.	5.8	4
2	Enantioselective UHPLC Screening Combined with <i>In Silico</i> Modeling for Streamlined Development of Ultrafast Enantiopurity Assays. Analytical Chemistry, 2022, 94, 1804-1812.	3.2	31
3	Boosting the enantioresolution of zwitterionic-teicoplanin chiral stationary phases by moving to wide-pore core-shell particles. Journal of Chromatography A, 2022, 1676, 463190.	1.8	6
4	Mass transfer kinetics on modern Whelk-O1 chiral stationary phases made on fully- and superficially-porous particles. Journal of Chromatography A, 2021, 1637, 461854.	1.8	16
5	Δ ⁹ - <i>cis</i> -Tetrahydrocannabinol: Natural Occurrence, Chirality, and Pharmacology. Journal of Natural Products, 2021, 84, 2502-2510.	1.5	33
6	High–throughput enantioseparation of Nα–fluorenylmethoxycarbonyl proteinogenic amino acids through fast chiral chromatography on zwitterionic-teicoplanin stationary phases. Journal of Chromatography A, 2020, 1624, 461235.	1.8	21
7	Cannabis sativa L. Inflorescences from Monoecious Cultivars Grown in Central Italy: An Untargeted Chemical Characterization from Early Flowering to Ripening. Molecules, 2020, 25, 1908.	1.7	38
8	Recent Achievements and Future Challenges in Supercritical Fluid Chromatography for the Enantioselective Separation of Chiral Pharmaceuticals. Chromatographia, 2019, 82, 65-75.	0.7	41
9	Enantioselective ultra high performance liquid and supercritical fluid chromatography: The race to the shortest chromatogram. Journal of Separation Science, 2018, 41, 1307-1318.	1.3	59
10	New frontiers and cutting edge applications in ultra high performance liquid chromatography through latest generation superficially porous particles with particular emphasis to the field of chiral separations. Analytical and Bioanalytical Chemistry, 2018, 410, 2457-2465.	1.9	32
11	On the effect of chiral selector loading and mobile phase composition on adsorption properties of latest generation fully- and superficially-porous Whelk-O1 particles for high-efficient ultrafast enantioseparations. Journal of Chromatography A, 2018, 1579, 41-48.	1.8	25
12	The Way to Ultrafast, High-Throughput Enantioseparations of Bioactive Compounds in Liquid and Supercritical Fluid Chromatography. Molecules, 2018, 23, 2709.	1.7	34
13	Direct analysis of chiral active pharmaceutical ingredients and their counterions by ultra high performance liquid chromatography with macrocyclic glycopeptide-based chiral stationary phases. Journal of Chromatography A, 2018, 1576, 42-50.	1.8	32
14	Unmatched Kinetic Performance in Enantioselective Supercritical Fluid Chromatography by Combining Latest Generation Whelk-O1 Chiral Stationary Phases with a Low-Dispersion in-House Modified Equipment. Analytical Chemistry, 2018, 90, 10828-10836.	3.2	29
15	Simultaneous Preconcentration, Identification, and Quantitation of Selenoamino Acids in Oils by Enantioselective High Performance Liquid Chromatography and Mass Spectrometry. Analytical Chemistry, 2018, 90, 8326-8330.	3.2	7
16	Recent advancements and future directions of superficially porous chiral stationary phases for ultrafast high-performance enantioseparations. Analyst, The, 2017, 142, 555-566.	1.7	64
17	<i>Cannabis</i> through the looking glass: chemo- and enantio-selective separation of phytocannabinoids by enantioselective ultra high performance supercritical fluid chromatography. Chemical Communications, 2017, 53, 12262-12265.	2.2	52
18	Future perspectives in high efficient and ultrafast chiral liquid chromatography through zwitterionic teicoplanin-based 2-μm superficially porous particles. Journal of Chromatography A, 2017, 1520, 91-102.	1.8	40

OMAR ISMAIL

#	Article	IF	CITATIONS
19	3,5-Dinitrobenzoyl-9-amino-9-deoxy-9-epiquinine as Pirkle-Anion Exchange Hybrid-Type Chiral Selector in High-Performance Liquid Chromatography. Chromatographia, 2017, 80, 751-762.	0.7	12
20	Rationale behind the optimum efficiency of columns packed with new 1.9μm fully porous particles of narrow particle size distribution. Journal of Chromatography A, 2016, 1454, 78-85.	1.8	49
21	Experimental evidence of the kinetic performance achievable with columns packed with new 1.91¼m fully porous particles of narrow particle size distribution. Journal of Chromatography A, 2016, 1454, 86-92.	1.8	33
22	Pirkle-type chiral stationary phase on core–shell and fully porous particles: Are superficially porous particles always the better choice toward ultrafast high-performance enantioseparations?. Journal of Chromatography A, 2016, 1466, 96-104.	1.8	71
23	Ultra-fast high-efficiency enantioseparations by means of a teicoplanin-based chiral stationary phase made on sub-2114m totally porous silica particles of narrow size distribution. Journal of Chromatography A, 2016, 1427, 55-68.	1.8	75
24	Expanding the potential of chiral chromatography for high-throughput screening of large compound libraries by means of sub–2μm Whelk-O 1 stationary phase in supercritical fluid conditions. Journal of Chromatography A, 2015, 1383, 160-168.	1.8	48
25	Evaluation of two sub-2μm stationary phases, core–shell and totally porous monodisperse, in the second dimension of on-line comprehensive two dimensional liquid chromatography, a case study: Separation of milk peptides after expiration date. Journal of Chromatography A, 2015, 1375, 54-61.	1.8	27
26	Enantioseparation by ultra-high-performance liquid chromatography. TrAC - Trends in Analytical Chemistry, 2014, 63, 95-103.	5.8	48
27	Understanding Mixed-Mode Retention Mechanisms in Liquid Chromatography with Hydrophobic Stationary Phases. Analytical Chemistry, 2014, 86, 4919-4926.	3.2	26
28	Chiral Supramolecular Selectors for Enantiomer Differentiation in Liquid Chromatography. Topics in Current Chemistry, 2013, 340, 73-105.	4.0	21
29	Fluorous Affinity Chromatography for Enrichment and Determination of Perfluoroalkyl Substances. Analytical Chemistry, 2012, 84, 7138-7145.	3.2	35
30	Enantioselective ultra-high and high performance liquid chromatography: A comparative study of columns based on the Whelk-O1 selector. Journal of Chromatography A, 2012, 1269, 226-241.	1.8	40
31	Introducing Enantioselective Ultrahigh-Pressure Liquid Chromatography (eUHPLC): Theoretical Inspections and Ultrafast Separations on a New Sub-2-1¼m Whelk-O1 Stationary Phase. Analytical Chemistry, 2012, 84, 6805-6813.	3.2	83
32	Transition from enantioselective high performance to ultra-high performance liquid chromatography: A case study of a brush-type chiral stationary phase based on sub-5-micron to sub-2-micron silica particles. Journal of Chromatography A, 2010, 1217, 990-999.	1.8	64
33	Extending the use of "Inverted Chirality Columns Approach―for enantiomeric excess determination in absence of reference samples: Application to a water-soluble camptothecin derivative. Journal of Chromatography A, 2010, 1217, 1024-1032.	1.8	30
34	Combination of HPLC "Inverted Chirality Columns Approach―and MS/MS Detection for Extreme Enantiomeric Excess Determination Even in Absence of Reference Samples. Application to Camptothecin Derivatives. Analytical Chemistry, 2007, 79, 6013-6019.	3.2	46
35	HPLC Chiral Stationary Phases Containing Macrocyclic Antibiotics. Advances in Chromatography, 2007, , 109-173.	1.0	6
36	Study of mechanisms of chiral discrimination of amino acids and their derivatives on a teicoplanin-based chiral stationary phase. Journal of Chromatography A, 2004, 1031, 143-158.	1.8	98

#	Article	IF	CITATIONS
37	Role of the Carbohydrate Moieties in Chiral Recognition on Teicoplanin-Based LC Stationary Phases. Analytical Chemistry, 2000, 72, 1767-1780.	3.2	213