
Mari Annadhasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7645541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanophotonics: Flexible Singleâ€Crystal Organic Waveguides and Circuits. Angewandte Chemie - International Edition, 2020, 59, 13852-13858.	13.8	184
2	Nextâ€Generation Organic Photonics: The Emergence of Flexible Crystal Optical Waveguides. Advanced Optical Materials, 2020, 8, 2000959.	7.3	134
3	Micromanipulation of Mechanically Compliant Organic Singleâ€Crystal Optical Microwaveguides. Angewandte Chemie - International Edition, 2020, 59, 13821-13830.	13.8	129
4	Mechanically Reconfigurable Organic Photonic Integrated Circuits Made from Two Electronically Different Flexible Microcrystals. Advanced Functional Materials, 2021, 31, 2100642.	14.9	74
5	Geometrically Reconfigurable, 2D, Allâ€Organic Photonic Integrated Circuits Made from Two Mechanically and Optically Dissimilar Crystals. Advanced Functional Materials, 2021, 31, 2105415.	14.9	54
6	Mechanophotonics: Flexible Singleâ€Crystal Organic Waveguides and Circuits. Angewandte Chemie, 2020, 132, 13956-13962.	2.0	37
7	Ambient Pressure Sublimation Technique Provides Polymorph‣elective Perylene Nonlinear Optical Microcavities. Advanced Optical Materials, 2020, 8, 1901317.	7.3	36
8	Mechanical Processing of Naturally Bent Organic Crystalline Microoptical Waveguides and Junctions. Small, 2021, 17, e2006795.	10.0	36
9	Vapourâ€Phase Epitaxial Growth of Dual olourâ€Emitting DCMâ€Perylene Microâ€Heterostructure Optical Waveguides. Chemistry - an Asian Journal, 2019, 14, 4577-4581.	3.3	32
10	Micromanipulation of Mechanically Compliant Organic Single rystal Optical Microwaveguides. Angewandte Chemie, 2020, 132, 13925-13934.	2.0	30
11	Polymorphism and microcrystal shape dependent luminescence, optical waveguiding and resonator properties of coumarin-153. Journal of Materials Chemistry C, 2017, 5, 7262-7269.	5.5	27
12	Integrating Triply―and Singlyâ€Bent Highly Flexible Crystal Optical Waveguides for Organic Photonic Circuit with a Longâ€Passâ€Filter Effect. Small Structures, 2022, 3, .	12.0	25
13	2D Arrangement of Polymer Microsphere Photonic Cavities Doped with Novel Nâ€Rich Carbon Quantum Dots Display Enhanced One―and Twoâ€Photon Luminescence Driven by Optical Resonances. Advanced Optical Materials, 2017, 5, 1700695.	7.3	21
14	Mechanical Actuation and Patterning of Rewritable Crystalline Monomerâ^'Polymer Heterostructures via Topochemical Polymerization in a Dual-Responsive Photochromic Organic Material. ACS Applied Materials & Interfaces, 2020, 12, 16856-16863.	8.0	21
15	Multifunctional Chiral Ï€â€Conjugated Polymer Microspheres: Production and Confinement of NLO signal, Detection of Circularly Polarized Light, and Display of Laserâ€Triggered NLO Emission Shifts. Advanced Optical Materials, 2020, 8, 2000431.	7.3	21
16	Realization of Mechanically Maneuverable Circuit Ports in Organic Hybrid Photonic Chip for 360° Steering of Bandwidthâ€Engineered Signals. Advanced Optical Materials, 2022, 10, .	7.3	20
17	High Optical Energy Storage and Two-Photon Luminescence from Solution-Processed Perovskite-Polystyrene Composite Microresonators. ACS Applied Energy Materials, 2019, 2, 428-435.	5.1	15
18	Mechanophotonic aspects of a room temperature phosphorescent flexible organic microcrystal. CrystEngComm, 2021, 23, 5774-5779.	2.6	15

Mari Annadhasan

#	Article	IF	CITATIONS
19	Mechanophotonics: precise selection, assembly and disassembly of polymer optical microcavities <i>via</i> mechanical manipulation for spectral engineering. Nanoscale Advances, 2020, 2, 5584-5590.	4.6	13
20	Hot-exciton harvesting <i>via</i> through-space single-molecule based white-light emission and optical waveguides. Chemical Science, 2022, 13, 9004-9015.	7.4	12
21	A Facile Sunlightâ€Induced Synthesis of Phenylalanineâ€Conjugated Cholic Acidâ€Stabilized Silver and Gold Nanoparticles for Colorimetric Detection of Toxic Hg ²⁺ , Cr ⁶⁺ and Pb ²⁺ Ions. ChemistrySelect, 2019, 4, 6557-6567.	1.5	11
22	Spatiotemporal Growth Anomalies in Photoisomerizable Cyanostilbene-Based Crystals Triggered by Light. Journal of Physical Chemistry C, 2021, 125, 4909-4916.	3.1	4
23	Magnetic Field–Assisted Manipulation of Polymer Optical Microcavities. Advanced Photonics Research, 2021, 2, 2000146.	3.6	4
24	Polarised Optical Emission from Organic Anisotropic Microoptical Waveguides Grown by Ambient Pressure Vapourâ€deposition. Chemistry - an Asian Journal, 2021, 16, 3476-3480.	3.3	3
25	Direct micro-scale monitoring of molecular aggregation, its growth and diffusion <i>via</i> aggregation-induced emission. Soft Matter, 2020, 16, 2664-2668.	2.7	2