Chong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7645321/publications.pdf

Version: 2024-02-01

840776 713466 27 475 11 21 citations h-index g-index papers 27 27 27 903 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget, 2017, 8, 12686-12694.	1.8	126
2	Simple, rapid and efficient transformation of genotype Nisqually-1: a basic tool for the first sequenced model tree. Scientific Reports, 2017, 7, 2638.	3.3	50
3	The Conserved Endoribonuclease YbeY Is Required for Chloroplast Ribosomal RNA Processing in Arabidopsis. Plant Physiology, 2015, 168, 205-221.	4.8	49
4	Catalytically healing the Stone–Wales defects in graphene by carbon adatoms. Journal of Materials Chemistry A, 2013, 1, 1885-1891.	10.3	30
5	Functional understanding of secondary cell wall cellulose synthases in <i>Populusti>tichocarpa</i> via the Cas9/gRNAâ€induced gene knockouts. New Phytologist, 2021, 231, 1478-1495.	7.3	26
6	Theoretical investigation on the healing mechanism of divacancy defect in graphene growth by reaction with ethylene and acetylene. New Journal of Chemistry, 2013, 37, 640-645.	2.8	24
7	Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC Plant Biology, 2019, 19, 276.	3.6	23
8	Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. Journal of Proteomics, 2015, 126, 94-108.	2.4	22
9	Computational investigation of hydrogen storage on B6Ti3+. International Journal of Hydrogen Energy, 2018, 43, 1658-1666.	7.1	16
10	Role of Hydrocarbon Radicals CH $<$ sub $><$ i $>×<$ /i $><$ /sub $>$ ($<$ i $>×<$ /i $>=$ 1, 2, 3) in Graphene Growth: A Theoretical Perspective. ChemPhysChem, 2012, 13, 774-779.	2.1	15
11	Computational investigation of hydrogen storage on B ₅ V ₃ . Molecular Physics, 2018, 116, 1290-1296.	1.7	13
12	Structures and stability of SCBO+/ \hat{a} ° and SBCO+/ \hat{a} °: prediction of very short yet classical triple bonding of sulfur. Structural Chemistry, 2014, 25, 1023-1031.	2.0	10
13	Characterization of the Populus PtrCesA4 promoter in transgenic Populus albaÂ×ÂP. glandulosa. Plant Cell, Tissue and Organ Culture, 2016, 124, 495-505.	2.3	10
14	The noble gases adsorption on boron-rich boron nitride nanotubes: A theoretical investigation. Superlattices and Microstructures, 2017, 107, 97-103.	3.1	9
15	A theoretical study on the hydrogen storage properties of planar (AlN)n clusters (nÂ=Â3-5). Structural Chemistry, 2017, 28, 1717-1722.	2.0	7
16	Remarkable hydrogen storage on Sc2B42+ cluster: A computational study. Vacuum, 2018, 149, 134-139.	3.5	7
17	The effect of charge on the dihydrogen storage capacity of Sc2–C6H6. International Journal of Hydrogen Energy, 2021, 46, 955-966.	7.1	7
18	A theoretical study on cage-like clusters (C12Ti6 and C12Ti62+) for dihydrogen storage. International Journal of Hydrogen Energy, 2019, 44, 10763-10769.	7.1	6

#	Article	IF	CITATIONS
19	Li center clusters MLi4+ (MÂ=ÂC, Si, Ge) for dihydrogen storage. International Journal of Hydrogen Energy, 2020, 45, 24968-24979.	7.1	6
20	Conversion of dinitrogen to ammonia by rhenium doped graphyne. International Journal of Hydrogen Energy, 2021, 46, 33409-33419.	7.1	5
21	Computational study on the interaction of nucleobases with boronâ€rich boron nitride nanotubes. International Journal of Quantum Chemistry, 2018, 118, e25757.	2.0	4
22	Screening of transition metal single atom catalysts supported on B36 cluster for nitrogen fixation. International Journal of Hydrogen Energy, 2022, 47, 5281-5291.	7.1	4
23	Stability and Hydrogen Storage Properties of M <i>_x</i> -B ₆ H ₆ Complexes (M = Y–Mo, Ru–Ag, <i>x</i> = 1–2). ACS Sustainable Chemistry and Engineering, 2021, 9, 10868-10881.	6.7	3
24	The theoretical research of hydrogen storage capacities of Cu3Bx (X= $1\hat{a}\in$ "4) compounds under ambient conditions. International Journal of Hydrogen Energy, 2020, 45, 24947-24957.	7.1	2
25	Carbon dioxide capture by planar (AlN)n clusters (n=3–5). Journal of Molecular Modeling, 2017, 23, 288.	1.8	1
26	Theoretical prediction of complexes with a sulfur–carbon triple bond: SCX2+, SCXF+, and SCXF2 (X = Be, Mg, Ca). Journal of Molecular Modeling, 2016, 22, 78.	1.8	0
27	A theoretical research of dihydrogen storage in ScxNy (x+y=4) compounds. International Journal of Hydrogen Energy, 2020, 45, 4693-4702.	7.1	O