Dominik Koszelewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7644851/publications.pdf

Version: 2024-02-01

79 2,372 22 46
papers citations h-index g-index

81 81 81 2153
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Wheat germ lipase: isolation, purification and applications. Critical Reviews in Biotechnology, 2022, 42, 184-200.	5.1	17
2	The sustainable copper-catalyzed direct formation of highly functionalized p-quinols in water. Sustainable Chemistry and Pharmacy, 2022, 25, 100576.	1.6	3
3	The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. Membranes, 2022, 12, 238.	1.4	8
4	Promiscuous Lipase-Catalyzed Markovnikov Addition of H-Phosphites to Vinyl Esters for the Synthesis of Cytotoxic α-Acyloxy Phosphonate Derivatives. Materials, 2022, 15, 1975.	1.3	12
5	Computer-designed repurposing of chemical wastes into drugs. Nature, 2022, 604, 668-676.	13.7	30
6	Screening for amidoxime reductases in plant roots and Saccharomyces cerevisiae – Development of biocatalytic method for chemoselective amidine synthesis. Bioorganic Chemistry, 2022, 124, 105815.	2.0	0
7	Relationship between Structure and Antibacterial Activity of α-Aminophosphonate Derivatives Obtained via Lipase-Catalyzed Kabachnikâ-'Fields Reaction. Materials, 2022, 15, 3846.	1.3	11
8	Influence of Open Chain and Cyclic Structure of Peptidomimetics on Antibacterial Activity in E. coli Strains. Molecules, 2022, 27, 3633.	1.7	8
9	Intensification of Double Kinetic Resolution of Chiral Amines and Alcohols via Chemoselective Formation of a Carbonate–Enzyme Intermediate. Molecules, 2022, 27, 4346.	1.7	1
10	Evaluation of thionolactones as a new type of hydrogen sulfide (H2S) donors for a blood pressure regulation. Bioorganic Chemistry, 2021, 108, 104650.	2.0	4
11	Evaluation of gem-Diacetates as Alternative Reagents for Enzymatic Regio- and Stereoselective Acylation of Alcohols. Journal of Organic Chemistry, 2021, 86, 6331-6342.	1.7	4
12	Model Studies on the Enzymeâ€Regulated Stereodivergent Cascade Passerini Reaction. European Journal of Organic Chemistry, 2021, 2021, 4161-4165.	1.2	3
13	Selective Esterification of Phosphonic Acids. Molecules, 2021, 26, 5637.	1.7	6
14	Pyridine Derivatives—A New Class of Compounds That Are Toxic to E. coli K12, R2–R4 Strains. Materials, 2021, 14, 5401.	1.3	14
15	The Synthesis and Evaluation of Amidoximes as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials, 2021, 14, 7577.	1.3	9
16	Evaluation of alcohols as substrates for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under environmentally friendly conditions. Catalysis Communications, 2020, 135, 105887.	1.6	8
17	Dual Activity of Grubbs-Type Catalyst in the Transvinylation of Carboxylic Acids and Ring-Closing Metathesis Reactions. Journal of Organic Chemistry, 2020, 85, 15305-15313.	1.7	5
18	The amine as carbonyl precursor in the chemoenzymatic synthesis of Passerini adducts in aqueous medium. Catalysis Communications, 2020, 145, 106118.	1.6	6

#	Article	IF	CITATIONS
19	Evaluation of Biodegradable Glucose Based Surfactants as a Promoting Medium for the Synthesis of Peptidomimetics with the Coumarin Scaffold. ChemistrySelect, 2020, 5, 9607-9614.	0.7	2
20	Hydrogen Sulfide in Pharmacotherapy, Beyond the Hydrogen Sulfide-Donors. Biomolecules, 2020, 10, 323.	1.8	72
21	Enzyme Promiscuity as a Remedy for the Common Problems with Knoevenagel Condensation. Chemistry - A European Journal, 2019, 25, 10156-10164.	1.7	13
22	Evaluation of thioamides, thiolactams and thioureas as hydrogen sulfide (H2S) donors for lowering blood pressure. Bioorganic Chemistry, 2019, 88, 102941.	2.0	20
23	Biocatalytic Promiscuity of Lipases in Carbonâ€Phosphorus Bond Formation. ChemCatChem, 2019, 11, 2554-2558.	1.8	18
24	Synthesis of (E)- \hat{l} ±, \hat{l} 2-unsaturated carboxylic esters derivatives from cyanoacetic acid via promiscuous enzyme-promoted cascade esterification/Knoevenagel reaction. Bioorganic Chemistry, 2019, 93, 102816.	2.0	8
25	The studies on chemoselective promiscuous activity of hydrolases on acylals transformations. Bioorganic Chemistry, 2019, 93, 102825.	2.0	7
26	The influence of the isocyanoesters structure on the course of enzymatic Ugi reactions. Bioorganic Chemistry, 2019, 93, 102817.	2.0	6
27	Synthesis of Enantiomerically Pure 5,6â€Dihydropyranâ€2â€ones via Chemoenzymatic Sequential DKRâ€RCM Reaction. European Journal of Organic Chemistry, 2019, 2019, 1653-1658.	1.2	12
28	The mechanistic promiscuity of the enzymatic esterification of chiral carboxylic acids. Catalysis Communications, 2018, 106, 82-86.	1.6	17
29	Differential quenching of the angular momentum of the B and Q bands of a porphyrin as a result of extended ring π-conjugation. Journal of Porphyrins and Phthalocyanines, 2018, 22, 1111-1128.	0.4	9
30	Multicomponent Reactions Accelerated by Aqueous Micelles. Frontiers in Chemistry, 2018, 6, 502.	1.8	80
31	Facile Conversion of αâ€Acyloxy Amides into 3â€Hydroxy″actams. European Journal of Organic Chemistry, 2018, 2018, 3280-3290.	1.2	7
32	The sustainable synthesis of peptidomimetics <i>via</i> chemoenzymatic tandem oxidation–Ugi reaction. RSC Advances, 2018, 8, 28405-28413.	1.7	10
33	The studies on the chemoenzymatic synthesis of 2-benzyl-3-butenoic acid. Catalysis Communications, 2018, 114, 6-9.	1.6	3
34	Studies on the Synthesis of Endocyclic Enol Lactones via a RCM of Selected Vinyl Esters. Journal of Organic Chemistry, 2018, 83, 8655-8661.	1.7	14
35	Enzyme mediated kinetic resolution of \hat{l} -hydroxy- \hat{l} +, \hat{l} 2-unsaturated esters as a route to optically active \hat{l} 3-lactones. Tetrahedron: Asymmetry, 2017, 28, 809-818.	1.8	13
36	A convenient stereoselective synthesis of 5-hydroxy-3-oxoesters and 3-hydroxy-5-oxoesters. Tetrahedron: Asymmetry, 2017, 28, 797-802.	1.8	5

#	Article	IF	CITATIONS
37	Enzymeâ€Promoted Asymmetric Tandem Passerini Reaction. ChemCatChem, 2017, 9, 3047-3053.	1.8	16
38	Studies on asymmetric synthesis of bicyclomycin precursors. A chemoenzymatic route to chiral 2,5-diketopiperazines and 2-oxa-bicyclo[4.2.2]decane-8,10-diones. Tetrahedron: Asymmetry, 2017, 28, 1127-1134.	1.8	4
39	Enzymatic Tandem Approach to Knoevenagel Condensation of Acetaldehyde with Acidic Methylene Compounds in Organic Media. European Journal of Organic Chemistry, 2017, 2017, 4572-4579.	1.2	18
40	Efficient Ugi reactions in an aqueous vesicle system. RSC Advances, 2017, 7, 33344-33354.	1.7	27
41	Parenteral Na ₂ S, a fast-releasing H ₂ S donor, but not GYY4137, a slow-releasing H ₂ S donor, lowers blood pressure in rats. Acta Biochimica Polonica, 2017, 64, 561-566.	0.3	10
42	Dynamic Kinetic Resolution of 3-Aryl-4-pentenoic Acids. ACS Catalysis, 2016, 6, 3287-3292.	5 . 5	19
43	Self-immolative versatile fluorogenic probes for screening of hydrolytic enzyme activity. Organic and Biomolecular Chemistry, 2016, 14, 9146-9150.	1.5	12
44	Enzymatic Ugi Reaction with Amines and Cyclic Imines. Chemistry - A European Journal, 2016, 22, 16684-16689.	1.7	21
45	Evaluation of Pseudoenantiomeric Mixed Carbonates as Efficient Fluorogenic Probes for Enantioselectivity Screening. ChemBioChem, 2016, 17, 71-76.	1.3	4
46	Environmentally friendly approach to \hat{l}_{\pm} -acyloxy carboxamides via a chemoenzymatic cascade. RSC Advances, 2016, 6, 68231-68237.	1.7	21
47	Enantioselective Reduction of Ethyl 3â€Oxoâ€5â€phenylpentanoate with Wholeâ€Cell Biocatalysts. European Journal of Organic Chemistry, 2016, 2016, 1007-1011.	1.2	12
48	Enzymatic Synergism in the Synthesis of βâ€Keto Esters. European Journal of Organic Chemistry, 2015, 2015, 5432-5437.	1.2	9
49	New meso-substituted corroles possessing pentafluorophenyl groups – synthesis and spectroscopic characterization. Physical Chemistry Chemical Physics, 2015, 17, 7411-7423.	1.3	12
50	Mixed Carbonates as Useful Substrates for a Fluorogenic Assay for Lipases and Esterases. ChemBioChem, 2015, 16, 677-682.	1.3	18
51	The influence of cosolvent concentration on enzymatic kinetic resolution of <i>trans</i> -2-phenyl-cyclopropane-1-carboxylic acid derivatives. Biocatalysis and Biotransformation, 2015, 33, 98-104.	1.1	4
52	Liquidâ€Crystalline Properties of <i>trans</i> à€A ₂ B ₂ â€Porphyrins with Extended l€â€Electron Systems. Chemistry - A European Journal, 2015, 21, 7384-7388.	1.7	9
53	Evaluation of a new protocol for enzymatic dynamic kinetic resolution of 3-hydroxy-3-(aryl)propanoic acids. Organic and Biomolecular Chemistry, 2015, 13, 11014-11020.	1.5	11
54	Efficient Passerini reactions in an aqueous vesicle system. RSC Advances, 2015, 5, 102828-102835.	1.7	34

#	Article	IF	Citations
55	Electrochemically Driven Intramolecular Oxidative Aromatic Coupling as a Pathway toward π-Extended Porphyrins. Inorganic Chemistry, 2013, 52, 9532-9538.	1.9	21
56	Dynamics of Intramolecular Excited State Proton Transfer in Emission Tunable, Highly Luminescent Imidazole Derivatives. Journal of Physical Chemistry C, 2013, 117, 791-803.	1.5	52
57	Synthesis and linear and nonlinear optical properties of low-melting π-extended porphyrins. Journal of Materials Chemistry C, 2013, 1, 2044.	2.7	47
58	Studies on the chemoenzymatic synthesis of 3-phenyl-GABA and 4-phenyl-pyrrolid-2-one: the influence of donor of the alkoxy group on enantioselective esterification. Tetrahedron: Asymmetry, 2013, 24, 427-433.	1.8	14
59	Artificial Multiâ€Enzyme Networks for the Asymmetric Amination of <i>sec</i> â€Alcohols. Chemistry - A European Journal, 2013, 19, 4030-4035.	1.7	99
60	Improved chemoenzymatic asymmetric synthesis of (S)-Rivastigmine. Tetrahedron, 2012, 68, 7691-7694.	1.0	45
61	The studies on chemoenzymatic synthesis of Femoxetine. Journal of Molecular Catalysis B: Enzymatic, 2012, 82, 96-101.	1.8	18
62	Regioselective Enzymatic Carboxylation of Phenols and Hydroxystyrene Derivatives. Organic Letters, 2012, 14, 1974-1977.	2.4	84
63	A new chemoenzymatic approach to the synthesis of chiral 4-aryl-1,4-dihydro-2H-isoquinolines via the enzymatic resolution of 2-acetyl-4-phenyl-1,4-dihydro-2H-isoquinolin-3-one. Tetrahedron: Asymmetry, 2012, 23, 1256-1261.	1.8	12
64	Selective Cycloaddition of Tetracyanoethene (TCNE) and 7,7,8,8â€Tetracyanoâ€ <i>p</i> â€quinodimethane (TCNQ) to Afford <i>meso</i> â€Substituted Phenylethynyl Porphyrins. Chemistry - an Asian Journal, 2012, 7, 1887-1894.	1.7	42
65	Enzymatic Racemization of Amines Catalyzed by Enantiocomplementary ωâ€Transaminases. Chemistry - A European Journal, 2011, 17, 378-383.	1.7	35
66	Synthesis of Optically Active Amines Employing Recombinant ωâ€Transaminases in <i>E.â€coli</i> Cells. ChemCatChem, 2010, 2, 73-77.	1.8	108
67	Immobilization of ï‰-transaminases by encapsulation in a sol–gel/celite matrix. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 39-44.	1.8	68
68	ï‰-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends in Biotechnology, 2010, 28, 324-332.	4.9	383
69	Testing of microorganisms for ω-transaminase activity. Tetrahedron: Asymmetry, 2010, 21, 2005-2009.	1.8	15
70	ï‰-Transaminases as efficient biocatalysts to obtain novel chiral selenium-amine ligands for Pd-catalysis. Organic and Biomolecular Chemistry, 2010, 8, 2043.	1.5	37
71	Synthesis of 4-phenylpyrrolidin-2-one via dynamic kinetic resolution catalyzed by ï‰-transaminases. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 191-194.	1.8	64
72	Deracemisation of αâ€Chiral Primary Amines by a Oneâ€Pot, Twoâ€Step Cascade Reaction Catalysed by ï‰â€Transaminases. European Journal of Organic Chemistry, 2009, 2009, 2289-2292.	1.2	102

#	Article	lF	CITATION
73	Deracemization of Mexiletine Biocatalyzed by ω-Transaminases. Organic Letters, 2009, 11, 4810-4812.	2.4	114
74	Asymmetric Synthesis of Optically Pure Pharmacologically Relevant Amines Employing ωâ€Transaminases. Advanced Synthesis and Catalysis, 2008, 350, 2761-2766.	2.1	176
75	Solventâ€Free Passerini Reactions. Synthetic Communications, 2008, 38, 1120-1127.	1.1	28
76	The study on efficient hydrolases immobilization for the kinetic resolution of the \hat{l}_{\pm} -acetoxyamides. Journal of Molecular Catalysis B: Enzymatic, 2007, 47, 51-57.	1.8	14
77	Studies on enzymatic synthesis of chiral non-racemic 3-arylglutaric acid monoesters. Tetrahedron: Asymmetry, 2006, 17, 961-966.	1.8	23
78	Enzymatic desymmetrization of 3-arylglutaric acid anhydrides. Tetrahedron: Asymmetry, 2005, 16, 2475-2485.	1.8	39
79	Selective Palladiumâ€Catalyzed α,βâ€Homodiarylation of Vinyl Esters in Aqueous Medium. European Journal of Organic Chemistry, 0, , .	1.2	5