
Lixin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7644753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 2016, 6, 1023-1027.	18.8	734
2	Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE, 2016, 11, e0156362.	2.5	606
3	Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil, 2015, 396, 1-26.	3.7	424
4	Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 2017, 44, 2792-2801.	4.0	308
5	Global synthesis of vegetation control on evapotranspiration partitioning. Geophysical Research Letters, 2014, 41, 6753-6757.	4.0	285
6	Observed increasing water constraint on vegetation growth over the last three decades. Nature Communications, 2021, 12, 3777.	12.8	246
7	Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agricultural Water Management, 2017, 179, 18-33.	5.6	238
8	Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews, 2018, 185, 357-373.	9.1	228
9	Clobal synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Science Reviews, 2016, 159, 388-403.	9.1	201
10	Partitioning evapotranspiration across gradients of woody plant cover: Assessment of a stable isotope technique. Geophysical Research Letters, 2010, 37, .	4.0	179
11	Global Synthesis of Drought Effects on Food Legume Production. PLoS ONE, 2015, 10, e0127401.	2.5	174
12	High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophysical Research Letters, 2016, 43, 9686-9695.	4.0	163
13	Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology and Evolution, 2018, 2, 1735-1744.	7.8	138
14	Significant Difference in Hydrogen Isotope Composition Between Xylem and Tissue Water in <i>Populus Euphratica</i> . Plant, Cell and Environment, 2016, 39, 1848-1857.	5.7	135
15	Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agriculture, Ecosystems and Environment, 2018, 268, 144-153.	5.3	135
16	Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 2015, 5, 8280.	3.3	127
17	A new multi-sensor integrated index for drought monitoring. Agricultural and Forest Meteorology, 2019, 268, 74-85.	4.8	123
18	Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sensing of Environment, 2021, 256, 112313.	11.0	114

#	Article	IF	CITATIONS
19	Constrained preferences in nitrogen uptake across plant species and environments. Plant, Cell and Environment, 2011, 34, 525-534.	5.7	113
20	Post-Fire Resource Redistribution in Desert Grasslands: A Possible Negative Feedback on Land Degradation. Ecosystems, 2009, 12, 434-444.	3.4	104
21	Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environmental Research Letters, 2019, 14, 074023.	5.2	94
22	Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China. Hydrology and Earth System Sciences, 2016, 20, 3309-3323.	4.9	92
23	Direct quantification of leaf transpiration isotopic composition. Agricultural and Forest Meteorology, 2012, 154-155, 127-135.	4.8	87
24	Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?. Agricultural Water Management, 2017, 190, 1-5.	5.6	83
25	Nonrainfall water origins and formation mechanisms. Science Advances, 2017, 3, e1603131.	10.3	79
26	On the calibration of continuous, highâ€precision <i>l̂´</i> ¹⁸ O and <i>l̂´</i> ² H measurements using an offâ€axis integrated cavity output spectrometer. Rapid Communications in Mass Spectrometry, 2009, 23, 530-536.	1.5	78
27	Impacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: A meta-analysis. Scientific Reports, 2017, 7, 12117.	3.3	78
28	Drought effects on root and tuber production: A meta-analysis. Agricultural Water Management, 2016, 176, 122-131.	5.6	74
29	Effects of nonâ€rainfall water inputs on ecosystem functions. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1179.	6.5	72
30	Stable isotope compositions (Î'2H, Î'18O and Î'17O) of rainfall and snowfall in the central United States. Scientific Reports, 2018, 8, 6712.	3.3	69
31	Elevated CO2 as a driver of global dryland greening. Scientific Reports, 2016, 6, 20716.	3.3	68
32	The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques. Geochimica Et Cosmochimica Acta, 2013, 111, 28-38.	3.9	67
33	The Sensitivity of Satellite Solarâ€Induced Chlorophyll Fluorescence to Meteorological Drought. Earth's Future, 2019, 7, 558-573.	6.3	67
34	Stable Isotopes of Water Vapor in the Vadose Zone: A Review of Measurement and Modeling Techniques. Vadose Zone Journal, 2012, 11, vzj2011.0165.	2.2	64
35	Spatial heterogeneity and sources of soil carbon in southern African savannas. Geoderma, 2009, 149, 402-408.	5.1	62
36	Form and function of grass ring patterns in arid grasslands: the role of abiotic controls. Oecologia, 2008, 158, 545-555.	2.0	61

#	Article	IF	CITATIONS
37	Using atmospheric trajectories to model the isotopic composition of rainfall in central Kenya. Ecosphere, 2013, 4, 1-18.	2.2	61
38	Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laserâ€based water vapor isotope analyzers. Journal of Geophysical Research, 2012, 117,	3.3	58
39	Dynamic interactions of ecohydrological and biogeochemical processes in waterâ€limited systems. Ecosphere, 2015, 6, 1-27.	2.2	58
40	Metaâ€Analysis of Phosphorus Loss from Noâ€īill Soils. Journal of Environmental Quality, 2017, 46, 1028-1037.	2.0	58
41	Shrub encroachment alters the spatial patterns of infiltration. Ecohydrology, 2015, 8, 83-93.	2.4	57
42	Spatial heterogeneity of soil nitrogen in a subtropical forest in China. Plant and Soil, 2007, 295, 137-150.	3.7	56
43	Comparing methods for partitioning a decade of carbon dioxide and water vapor fluxes in a temperate forest. Agricultural and Forest Meteorology, 2016, 226-227, 229-245.	4.8	56
44	Patterns and implications of Plant-soil <i>l´</i> ¹³ C and <i>l´</i> ¹⁵ N values in African savanna ecosystems. Quaternary Research, 2010, 73, 77-83.	1.7	55
45	Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system. Agricultural Water Management, 2017, 179, 103-109.	5.6	55
46	Soil carbon and nitrogen dynamics in southern African savannas: the effect of vegetation-induced patch-scale heterogeneities and large scale rainfall gradients. Climatic Change, 2009, 94, 63-76.	3.6	53
47	Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters. Rapid Communications in Mass Spectrometry, 2011, 25, 3071-3082.	1.5	51
48	Relationship between soil water content and soil particle size on typical slopes of the Loess Plateau during a drought year. Science of the Total Environment, 2019, 648, 943-954.	8.0	51
49	Ecosystem service provision of grain legume and cereal intercropping in Africa. Agricultural Systems, 2020, 178, 102761.	6.1	49
50	Large Ecosystem Service Benefits of Assisted Natural Regeneration. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 676-687.	3.0	48
51	Factors controlling spatial and seasonal distributions of precipitation δ ¹⁸ 0 in China. Hydrological Processes, 2012, 26, 143-152.	2.6	47
52	Nutrient foraging via physiological and morphological plasticity in three plant species. Canadian Journal of Forest Research, 2006, 36, 164-173.	1.7	45
53	Land preparation and vegetation type jointly determine soil conditions after long-term land stabilization measures in a typical hilly catchment, Loess Plateau of China. Journal of Soils and Sediments, 2017, 17, 144-156.	3.0	45
54	The spatial distribution and temporal variation of desert riparian forests and their influencing factors in the downstream Heihe River basin, China. Hydrology and Earth System Sciences, 2017, 21, 2405-2419.	4.9	45

#	Article	IF	CITATIONS
55	Transpiration Dominates Ecosystem Waterâ€Use Efficiency in Response to Warming in an Alpine Meadow. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 453-462.	3.0	44
56	Fog and Dew as Potable Water Resources: Maximizing Harvesting Potential and Water Quality Concerns. GeoHealth, 2018, 2, 327-332.	4.0	43
57	Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrubâ€encroached steppe ecosystem. New Phytologist, 2018, 219, 1325-1337.	7.3	42
58	Contribution of recycled moisture to local precipitation in the inland Heihe River Basin. Agricultural and Forest Meteorology, 2019, 271, 316-335.	4.8	42
59	Data Descriptor: Daily observations of stable isotope ratios of rainfall in the tropics. Scientific Reports, 2019, 9, 14419.	3.3	40
60	Effects of terracing on soil water and canopy transpiration of Pinus tabulaeformis in the Loess Plateau of China. Ecological Engineering, 2017, 102, 557-564.	3.6	39
61	Ecohydrological interactions within "fairy circles―in the Namib Desert: Revisiting the selfâ€organization hypothesis. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 405-414.	3.0	38
62	A new station-enabled multi-sensor integrated index for drought monitoring. Journal of Hydrology, 2019, 574, 169-180.	5.4	38
63	Combined effects of soil moisture and nitrogen availability variations on grass productivity in African savannas. Plant and Soil, 2010, 328, 95-108.	3.7	37
64	Convergent vegetation fog and dew water use in the Namib Desert. Ecohydrology, 2019, 12, e2130.	2.4	37
65	A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management. Environmental Monitoring and Assessment, 2018, 190, 79.	2.7	36
66	Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, 2020, 288-289, 108020.	4.8	35
67	Responses of Chinese fir and Schima superba seedlings to light gradients: Implications for the restoration of mixed broadleaf-conifer forests from Chinese fir monocultures. Forest Ecology and Management, 2018, 419-420, 51-57.	3.2	34
68	Canopy isotopic investigation reveals different water uptake dynamics of maples and oaks. Phytochemistry, 2020, 175, 112389.	2.9	34
69	Impacts of increasing typhoons on the structure and function of a subtropical forest: reflections of a changing climate. Scientific Reports, 2017, 7, 4911.	3.3	33
70	Enhanced canopy growth precedes senescence in 2005 and 2010 Amazonian droughts. Remote Sensing of Environment, 2018, 211, 26-37.	11.0	33
71	Causes and consequences of pronounced variation in the isotope composition of plant xylem water. Biogeosciences, 2020, 17, 4853-4870.	3.3	33
72	Increased Global Vegetation Productivity Despite Rising Atmospheric Dryness Over the Last Two Decades. Earth's Future, 2022, 10, .	6.3	32

#	Article	IF	CITATIONS
73	Understanding ecohydrological connectivity in savannas: a system dynamics modelling approach. Ecohydrology, 2012, 5, 200-220.	2.4	31
74	Divergence of stable isotopes in tap water across China. Scientific Reports, 2017, 7, 43653.	3.3	30
75	Multiple Methods to Partition Evapotranspiration in a Maize Field. Journal of Hydrometeorology, 2017, 18, 139-149.	1.9	30
76	Spatial and temporal variations of tap water 170-excess in China. Geochimica Et Cosmochimica Acta, 2019, 260, 1-14.	3.9	30
77	Sand dune stabilization changes the vegetation characteristics and soil seed bank and their correlations with environmental factors. Science of the Total Environment, 2019, 648, 500-507.	8.0	29
78	Do ² H and ¹⁸ O in leaf water reflect environmental drivers differently?. New Phytologist, 2022, 235, 41-51.	7.3	29
79	Quantifying the Controls on Evapotranspiration Partitioning in the Highest Alpine Meadow Ecosystem. Water Resources Research, 2020, 56, e2019WR024815.	4.2	28
80	Spatial Variations of Soil Moisture under Caragana korshinskii Kom. from Different Precipitation Zones: Field Based Analysis in the Loess Plateau, China. Forests, 2016, 7, 31.	2.1	27
81	The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe. Ecosphere, 2017, 8, e01655.	2.2	27
82	An Analysis of Precipitation Isotope Distributions across Namibia Using Historical Data. PLoS ONE, 2016, 11, e0154598.	2.5	27
83	Nutrient limitations on aboveground grass production in four savanna types along the Kalahari Transect. Journal of Arid Environments, 2010, 74, 284-290.	2.4	26
84	Sand burial compensates for the negative effects of erosion on the dune-building shrub Artemisia wudanica. Plant and Soil, 2014, 374, 263-273.	3.7	26
85	Precipitation Origins and Key Drivers of Precipitation Isotope (¹⁸ 0, ² H, and) Tj ETQq1 1 123, 7311-7330.	0.78431 3.3	4 rgBT /Ov∈ 26
86	Intensified vegetation water use under acid deposition. Science Advances, 2019, 5, eaav5168.	10.3	26
87	Increased human pressures on the alpine ecosystem along the Qinghai-Tibet Railway. Regional Environmental Change, 2020, 20, 1.	2.9	26
88	The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert. PLoS ONE, 2016, 11, e0164982.	2.5	25
89	A multi-scale analysis of Namibian rainfall over the recent decade – comparing TMPA satellite estimates and ground observations. Journal of Hydrology: Regional Studies, 2016, 8, 59-68.	2.4	25
90	Foliar <i>Ĵ´</i> ¹⁵ N patterns along successional gradients at plant community and species levels. Geophysical Research Letters, 2007, 34, .	4.0	24

#	Article	IF	CITATIONS
91	Spatial patterns of infiltration vary with disturbance in a shrub-encroached woodland. Geomorphology, 2013, 194, 57-64.	2.6	24
92	Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas. Landscape Ecology, 2013, 28, 685-698.	4.2	24
93	Soil phosphorus budget in global grasslands and implications for management. Journal of Arid Environments, 2017, 144, 224-235.	2.4	24
94	Stable Isotope Composition of River Waters across the World. Water (Switzerland), 2019, 11, 1760.	2.7	24
95	Nitrogen preference across generations under changing ammonium nitrate ratios. Journal of Plant Ecology, 2019, 12, 235-244.	2.3	23
96	Meta-analysis of ridge-furrow cultivation effects on maize production and water use efficiency. Agricultural Water Management, 2020, 234, 106144.	5.6	23
97	Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years. Geography and Sustainability, 2021, 2, 74-85.	4.3	23
98	Seasonality of the Transpiration Fraction and Its Controls Across Typical Ecosystems Within the Heihe River Basin. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1277-1291.	3.3	22
99	Valuing the ecosystem services of cover crops: barriers and pathways forward. Agriculture, Ecosystems and Environment, 2019, 270-271, 76-78.	5.3	22
100	Geographical distribution and determining factors of different invasive ranks of alien species across China. Science of the Total Environment, 2020, 722, 137929.	8.0	22
101	A Î'2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology, 2021, 593, 125811.	5.4	22
102	Conservation tillage increases corn and soybean water productivity across the Ohio River Basin. Agricultural Water Management, 2021, 254, 106962.	5.6	22
103	The Limits of Water Pumps. Science, 2008, 321, 36-37.	12.6	21
104	The colonization of active sand dunes by rhizomatous plants through vegetative propagation and its role in vegetation restoration. Ecological Engineering, 2012, 44, 344-347.	3.6	21
105	Water vapor δ ² H, δ ¹⁸ O and δ ¹⁷ O measurements using an offâ€axis integrated cavity output spectrometer – sensitivity to water vapor concentration, delta value and averagingâ€ŧime. Rapid Communications in Mass Spectrometry, 2016, 30, 2077-2086.	1.5	21
106	Stable isotopes of river water and groundwater along altitudinal gradients in the High Himalayas and the Eastern Nyainqentanghla Mountains. Journal of Hydrology: Regional Studies, 2017, 14, 37-48.	2.4	21
107	The impact of fog on soil moisture dynamics in the Namib Desert. Advances in Water Resources, 2018, 113, 23-29.	3.8	21
108	Ploughing and grazing alter the spatial patterning of surface soils in a shrub-encroached woodland. Geoderma, 2013, 200-201, 67-76.	5.1	20

#	Article	IF	CITATIONS
109	Responses of rhizomatous grass Phragmites communis to wind erosion: effects on biomass allocation. Plant and Soil, 2014, 380, 389-398.	3.7	20
110	A global synthesis of transpiration rate and evapotranspiration partitioning in the shrub ecosystems. Journal of Hydrology, 2022, 606, 127417.	5.4	20
111	Current and future carbon stocks of natural forests in China. Forest Ecology and Management, 2022, 511, 120137.	3.2	20
112	Predicting leaf and canopy15N compositions from reflectance spectra. Geophysical Research Letters, 2007, 34, .	4.0	19
113	Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China. Scientific Reports, 2016, 6, 20905.	3.3	19
114	Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment. Hydrology and Earth System Sciences, 2017, 21, 533-548.	4.9	19
115	Mass loss and nutrient dynamics during litter decomposition under three mixing treatments in a typical steppe in Inner Mongolia. Plant and Soil, 2013, 366, 107-118.	3.7	18
116	Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate. Advances in Water Resources, 2017, 103, 44-50.	3.8	18
117	Tree ring δ ¹⁸ O reveals no longâ€ŧerm change of atmospheric water demand since 1800 in the northern Great Hinggan Mountains, China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6697-6712.	3.3	18
118	African dryland ecosystem changes controlled by soil water. Land Degradation and Development, 2019, 30, 1564-1573.	3.9	18
119	Water limitations to large-scale desert agroforestry projects for carbon sequestration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24925-24926.	7.1	18
120	Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe. Scientific Reports, 2015, 5, 15549.	3.3	18
121	Characterizing ecohydrological and biogeochemical connectivity across multiple scales: a new conceptual framework. Ecohydrology, 2012, 5, 221-233.	2.4	17
122	Ecohydrology: Processes and Implications for Rangelands. Springer Series on Environmental Management, 2017, , 85-129.	0.3	17
123	Carbon and nitrogen parasitism by a xylemâ€ŧapping mistletoe (<i>Tapinanthus oleifolius</i>) along the Kalahari Transect: a stable isotope study. African Journal of Ecology, 2008, 46, 540-546.	0.9	16
124	Distribution of Shrubland and Grassland Soil Erodibility on the Loess Plateau. International Journal of Environmental Research and Public Health, 2018, 15, 1193.	2.6	16
125	Responses and feedbacks of African dryland ecosystems to environmental changes. Current Opinion in Environmental Sustainability, 2021, 48, 29-35.	6.3	16
126	Dew formation reduction in global warming experiments and the potential consequences. Journal of Hydrology, 2021, 593, 125819.	5.4	16

#	Article	IF	CITATIONS
127	Dew formation characteristics in the gravel desert ecosystem and its ecological roles on Reaumuria soongorica. Journal of Hydrology, 2021, 603, 126932.	5.4	16
128	Age-related water use characteristics of Robinia pseudoacacia on the Loess Plateau. Agricultural and Forest Meteorology, 2021, 301-302, 108344.	4.8	15
129	Stable isotope variations of daily precipitation from 2014–2018 in the central United States. Scientific Data, 2019, 6, 190018.	5.3	15
130	A novel method to continuously monitor litter moisture – A microcosm-based experiment. Journal of Arid Environments, 2015, 115, 10-13.	2.4	14
131	Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements. Journal of Hydrology, 2015, 523, 67-78.	5.4	14
132	Excessive Accumulation of Chinese Fir Litter Inhibits Its Own Seedling Emergence and Early Growth—A Greenhouse Perspective. Forests, 2017, 8, 341.	2.1	14
133	The competitive advantage of a constitutive CAM species over a C ₄ grass species under drought and CO ₂ enrichment. Ecosphere, 2019, 10, e02721.	2.2	13
134	Investigating the role of evaporation in dew formation under different climates using 170-excess. Journal of Hydrology, 2021, 592, 125847.	5.4	13
135	Fog Spatial Distributions over the Central Namib Desert - An Isotope Approach. Aerosol and Air Quality Research, 2018, 18, 49-61.	2.1	13
136	The interactive nutrient and water effects on vegetation biomass at two <scp>A</scp> frican savannah sites with different mean annual precipitation. African Journal of Ecology, 2012, 50, 446-454.	0.9	12
137	Vegetation changes and water cycle in aÂchanging environment. Hydrology and Earth System Sciences, 2018, 22, 1731-1734.	4.9	12
138	Satellite Solar-Induced Chlorophyll Fluorescence Reveals Heat Stress Impacts on Wheat Yield in India. Remote Sensing, 2020, 12, 3277.	4.0	12
139	Water sources of major plant species along a strong climatic gradient in the inland Heihe River Basin. Plant and Soil, 2020, 455, 439-466.	3.7	12
140	The effects of short-term rainfall variability on leaf isotopic traits of desert plants in sand-binding ecosystems. Ecological Engineering, 2013, 60, 116-125.	3.6	11
141	Massive crop expansion threatens agriculture and water sustainability in northwestern China. Environmental Research Letters, 2022, 17, 034003.	5.2	11
142	Relationship between seed morphological traits and wind dispersal trajectory. Functional Plant Biology, 2019, 46, 1063.	2.1	10
143	Satellite Observed Positive Impacts of Fog on Vegetation. Geophysical Research Letters, 2020, 47, e2020GL088428.	4.0	10
144	The importance of cuticular permeance in assessing plant water–use strategies. Tree Physiology, 2020, 40, 425-432.	3.1	10

#	Article	IF	CITATIONS
145	Improved understanding of the spatially-heterogeneous relationship between satellite solar-induced chlorophyll fluorescence and ecosystem productivity. Ecological Indicators, 2021, 129, 107949.	6.3	10
146	Comprehensive Quantification of the Responses of Ecosystem Production and Respiration to Drought Time Scale, Intensity and Timing in Humid Environments: A FLUXNET Synthesis. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	10
147	Soil CO ₂ flux and its controls during secondary succession. Journal of Geophysical Research, 2010, 115, .	3.3	9
148	The impact of grazing on seedling patterns in degraded sparseâ€elm grassland. Land Degradation and Development, 2018, 29, 2330-2337.	3.9	9
149	Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation. Biogeosciences, 2018, 15, 2379-2391.	3.3	9
150	The Drought Response of Eastern US Oaks in the Context of Their Declining Abundance. BioScience, 2022, 72, 333-346.	4.9	9
151	The hidden costs of desert development. Ambio, 2020, 49, 1412-1422.	5.5	8
152	Crop yield and soil organic carbon under ridge–furrow cultivation in China: A metaâ€analysis. Land Degradation and Development, 2021, 32, 2978-2991.	3.9	8
153	Linking ethylene to nitrogen-dependent leaf longevity of grass species in a temperate steppe. Annals of Botany, 2013, 112, 1879-1885.	2.9	7
154	Responses of secondary wind dispersal to environmental characteristics and diaspore morphology of sevenCalligonumspecies. Land Degradation and Development, 2020, 31, 842-850.	3.9	7
155	Isotope signature of maize stem and leaf and investigation of transpiration and water transport. Agricultural Water Management, 2021, 247, 106727.	5.6	7
156	Nitrogen addition amplified water effects on species composition shift and productivity increase. Journal of Plant Ecology, 2021, 14, 816-828.	2.3	7
157	Vegetation responses and tradeâ€offs with soilâ€related ecosystem services after shrub removal: A metaâ€analysis. Land Degradation and Development, 2019, 30, 1219-1228.	3.9	6
158	No-till is challenged: Complementary management is crucial to improve its environmental benefits under a changing climate. Geography and Sustainability, 2020, 1, 229-232.	4.3	6
159	Effects of climatic and social factors on dispersal strategies of alien species across China. Science of the Total Environment, 2020, 749, 141443.	8.0	6
160	Triple isotope variations of monthly tap water in China. Scientific Data, 2020, 7, 336.	5.3	6
161	Threshold of vapour–pressure deficit constraint on light use efficiency varied with soil water content. Ecohydrology, 2022, 15, e2305.	2.4	6
162	The vulnerability of ecosystem structure in the semi-arid area revealed by the functional trait networks. Ecological Indicators, 2022, 139, 108894.	6.3	6

#	Article	IF	CITATIONS
163	Contrasting water use characteristics of riparian trees under different water tables along a losing river. Journal of Hydrology, 2022, 611, 128017.	5.4	6
164	Satellite prediction of soil δ13C distributions in a southern African savanna. Journal of Geochemical Exploration, 2009, 102, 137-141.	3.2	5
165	The potential contribution of soil moisture to fog formation in the Namib Desert. Journal of Hydrology, 2020, 591, 125326.	5.4	5
166	Assessing Temperate Forest Growth and Climate Sensitivity in Response to a Longâ€Term Wholeâ€Watershed Acidification Experiment. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005560.	3.0	5
167	Enhanced coupling of light use efficiency and water use efficiency in arid and semiâ€arid environments. Ecohydrology, 2022, 15, e2391.	2.4	5
168	Tropical cyclones disrupt the relationship between tree height and species diversity: Comment. Ecosphere, 2017, 8, e01938.	2.2	4
169	Reply to: Data do not support large-scale oligotrophication of terrestrial ecosystems. Nature Ecology and Evolution, 2019, 3, 1287-1288.	7.8	4
170	Forests affected by frequent and intense typhoons challenge the intermediate disturbance hypothesis. Biotropica, 2019, 51, 797-801.	1.6	4
171	A modified isotope-based method for potential high-frequency evapotranspiration partitioning. Advances in Water Resources, 2022, 160, 104103.	3.8	4
172	Reconciling the isotope-based fog classification with meteorological conditions of different fog types. Journal of Hydrology, 2022, 605, 127321.	5.4	4
173	Seedling emergence and early growth of Chinese fir under different light levels and seed positions: implications for natural regeneration. Canadian Journal of Forest Research, 2018, 48, 1034-1041.	1.7	3
174	One-hundred years after shrub encroachment: Policy directions towards sustainable rangeland-use. Land Use Policy, 2019, 84, 71-78.	5.6	3
175	Evaluating ecohydrological modelling framework to link atmospheric CO 2 and stomatal conductance. Ecohydrology, 2019, 12, e2051.	2.4	3
176	Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor. Hydrology and Earth System Sciences, 2020, 24, 4491-4501.	4.9	3
177	Are the shoreline and eutrophication of desert lakes related to desert development?. Environmental Monitoring and Assessment, 2021, 193, 43.	2.7	2
178	Ecohydrological Controls on the Deposition of Non-rainfall Water, N, and P to Dryland Ecosystems. , 2019, , 121-137.		2
179	The feasibility of using soil seed bank for natural regeneration of degraded sandy grasslands. International Soil and Water Conservation Research, 2022, 10, 414-421.	6.5	2
180	Satellite observed vegetation dynamics and drivers in the Namib sand sea over the recent 20 years. Ecohydrology, 2022, 15, .	2.4	2

#	Article	IF	CITATIONS
181	Nitrogen rather than streamflow regulates the growth of riparian trees. Chemical Geology, 2020, 547, 119666.	3.3	1
182	Remote Sensing of Nitrogen and Carbon Isotope Compositions in Terrestrial Ecosystems. , 2010, , 51-70.		1
183	Stable isotope variations of dew under three different climates. Scientific Data, 2022, 9, 50.	5.3	Ο