F J Gutiérrez Ortiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7644678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biofuel production from supercritical water gasification of sustainable biomass. Energy Conversion and Management: X, 2022, 14, 100164.	1.6	2
2	Heat Transfer Limitations in Supercritical Water Gasification. Energies, 2022, 15, 177.	3.1	2
3	Energy Hybridization with Combined Heat and Power Technologies in Supercritical Water Gasification Processes. Applied Sciences (Switzerland), 2022, 12, 5497.	2.5	1
4	A new time-dependent rate constant of the coalescence kernel for the modelling of fluidised bed granulation. Powder Technology, 2021, 379, 321-334.	4.2	6
5	Development of contemporary engineering graduate attributes through open-ended problems and activities. European Journal of Engineering Education, 2021, 46, 441-456.	2.3	15
6	Life cycle assessment of the Fischer-Tropsch biofuels production by supercritical water reforming of the bio-oil aqueous phase. Energy, 2020, 210, 118648.	8.8	17
7	Techno-economic assessment of supercritical processes for biofuel production. Journal of Supercritical Fluids, 2020, 160, 104788.	3.2	44
8	The use of process simulation in supercritical fluids applications. Reaction Chemistry and Engineering, 2020, 5, 424-451.	3.7	30
9	A pilot-scale laboratory experience for an inductive learning of hydrodynamics in a sieve-tray tower. Education for Chemical Engineers, 2019, 29, 42-55.	4.8	1
10	Modeling of fixed-bed columns for gas physical adsorption. Chemical Engineering Journal, 2019, 378, 121985.	12.7	22
11	Integral energy valorization of municipal solid waste reject fraction to biofuels. Energy Conversion and Management, 2019, 180, 1167-1184.	9.2	27
12	Hydrogen production from supercritical water reforming of acetic acid, acetol, 1-butanol and glucose over Ni-based catalyst. Journal of Supercritical Fluids, 2018, 138, 259-270.	3.2	16
13	Techno-economic assessment of an energy self-sufficient process to produce biodiesel under supercritical conditions. Journal of Supercritical Fluids, 2017, 128, 349-358.	3.2	25
14	Fischer-Tropsch biofuels production from syngas obtained by supercritical water reforming of the bio-oil aqueous phase. Energy Conversion and Management, 2017, 150, 599-613.	9.2	28
15	Techno-economic assessment of bio-oil aqueous phase-to-liquids via Fischer-Tropsch synthesis and based on supercritical water reforming. Energy Conversion and Management, 2017, 154, 591-602.	9.2	22
16	Effect of mixing bio-oil aqueous phase model compounds on hydrogen production in non-catalytic supercritical reforming. Reaction Chemistry and Engineering, 2017, 2, 679-687.	3.7	8
17	Supercritical water reforming of model compounds of bio-oil aqueous phase: Acetic acid, acetol, butanol and glucose. Chemical Engineering Journal, 2016, 298, 243-258.	12.7	39
18	Turnover rates for the supercritical water reforming of glycerol on supported Ni and Ru catalysts. Fuel, 2016, 180, 417-423.	6.4	14

F J GUTIéRREZ ORTIZ

#	Article	IF	CITATIONS
19	Techno-economic assessment of biogas plant upgrading by adsorption of hydrogen sulfide on treated sewage–sludge. Energy Conversion and Management, 2016, 126, 411-420.	9.2	23
20	High performance regenerative adsorption of hydrogen sulfide from biogas on thermally-treated sewage-sludge. Fuel Processing Technology, 2016, 145, 148-156.	7.2	6
21	Supercritical water reforming of glycerol: Performance of Ru and Ni catalysts on Al2O3 support. Energy, 2016, 96, 561-568.	8.8	27
22	Prediction of fixed-bed breakthrough curves for H 2 S adsorption from biogas: Importance of axial dispersion for design. Chemical Engineering Journal, 2016, 289, 93-98.	12.7	54
23	Techno-economic assessment of hydrogen and power production from supercritical water reforming of glycerol. Fuel, 2015, 144, 307-316.	6.4	43
24	Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol. Energy Conversion and Management, 2015, 96, 637-645.	9.2	42
25	Hydrogen production from supercritical water reforming of glycerol over Ni/Al2O3–SiO2 catalyst. Energy, 2015, 84, 634-642.	8.8	43
26	Biogas desulfurization by adsorption on thermally treated sewage-sludge. Separation and Purification Technology, 2014, 123, 200-213.	7.9	45
27	Syngas methanation from the supercritical water reforming of glycerol. Energy, 2014, 76, 584-592.	8.8	12
28	Modeling and simulation of the adsorption of biogas hydrogen sulfide on treated sewage–sludge. Chemical Engineering Journal, 2014, 253, 305-315.	12.7	37
29	Investigation into the parameters of influence on dust cake porosity in hot gas filtration. Powder Technology, 2014, 264, 592-598.	4.2	21
30	Autothermal Reforming of Glycerol with Supercritical Water for Maximum Power through a Turbine Plus a Fuel Cell. Energy & Fuels, 2013, 27, 576-587.	5.1	12
31	Methanol synthesis from syngas obtained by supercritical water reforming of glycerol. Fuel, 2013, 105, 739-751.	6.4	76
32	Optimization of power and hydrogen production from glycerol by supercritical water reforming. Chemical Engineering Journal, 2013, 218, 309-318.	12.7	40
33	Experimental study of the supercritical water reforming of glycerol without the addition of a catalyst. Energy, 2013, 56, 193-206.	8.8	46
34	An energy and exergy analysis of the supercritical water reforming of glycerol for power production. International Journal of Hydrogen Energy, 2012, 37, 209-226.	7.1	42
35	Process integration and exergy analysis of the autothermal reforming of glycerol using supercritical water. Energy, 2012, 42, 192-203.	8.8	28
36	Thermodynamic study of the supercritical water reforming of glycerol. International Journal of Hydrogen Energy, 2011, 36, 8994-9013.	7.1	67

F J GUTIéRREZ ORTIZ

#	Article	IF	CITATIONS
37	Modeling of fire-tube boilers. Applied Thermal Engineering, 2011, 31, 3463-3478.	6.0	49
38	Thermodynamic analysis of the autothermal reforming of glycerol using supercritical water. International Journal of Hydrogen Energy, 2011, 36, 12186-12199.	7.1	32
39	Assessment of plate–wire electrostatic precipitators based on dimensional and similarity analyses. Fuel, 2011, 90, 2827-2835.	6.4	7
40	Assessment performance of high-temperature filtering elements. Fuel, 2010, 89, 848-854.	6.4	27
41	Dimensional analysis for assessing the performance of electrostatic precipitators. Fuel Processing Technology, 2010, 91, 1783-1793.	7.2	23
42	A simple realistic modeling of full-scale wet limestone FGD units. Chemical Engineering Journal, 2010, 165, 426-439.	12.7	22
43	Using Neural Networks to Address Nonlinear pH Control in Wet Limestone Flue Gas Desulfurization Plants. Industrial & Engineering Chemistry Research, 2010, 49, 2263-2272.	3.7	19
44	Model Predictive Control of a Wet Limestone Flue Gas Desulfurization Pilot Plant. Industrial & Engineering Chemistry Research, 2009, 48, 5399-5405.	3.7	23
45	A realistic approach to modeling an in-duct desulfurization process based on an experimental pilot plant study. Chemical Engineering Journal, 2008, 141, 141-150.	12.7	9
46	Modeling of the in-duct sorbent injection process for flue gas desulfurization. Separation and Purification Technology, 2008, 62, 571-581.	7.9	17
47	Dynamic Analysis and Identification of a Wet Limestone Flue Gas Desulfurization Pilot Plant. Industrial & Engineering Chemistry Research, 2008, 47, 8263-8272.	3.7	9
48	Controllability Analysis and Decentralized Control of a Wet Limestone Flue Gas Desulfurization Plant. Industrial & Engineering Chemistry Research, 2008, 47, 9931-9940.	3.7	10
49	Catalytic Seawater Flue Gas Desulfurization Process:Â An Experimental Pilot Plant Study. Environmental Science & Technology, 2007, 41, 7114-7119.	10.0	42
50	A technical assessment of a particle hybrid collector in a pilot plant. Chemical Engineering Journal, 2007, 127, 131-142.	12.7	32
51	Pilot-Plant Technical Assessment of Wet Flue Gas Desulfurization Using Limestone. Industrial & Engineering Chemistry Research, 2006, 45, 1466-1477.	3.7	147
52	Catalytic Oxidation of S(IV) in Seawater Slurries of Activated Carbon. Environmental Science & Technology, 2005, 39, 5031-5036.	10.0	25
53	Flue-Gas Desulfurization in an Advanced in-Duct Desulfurization Process:  An Empirical Model from an Experimental Pilot-Plant Study. Industrial & Engineering Chemistry Research, 2003, 42, 6625-6637.	3.7	12
54	A technical pilot plant assessment of flue gas desulfurisation in a circulating fluidised bed. Journal of Environmental Management, 2002, 7, 73-85.	1.7	11

#	Article	IF	CITATIONS
55	Flue-Gas Desulfurization in Circulating Fluidized Beds:Â An Empirical Model from an Experimental Pilot-Plant Study. Industrial & Engineering Chemistry Research, 2001, 40, 5640-5648.	3.7	11
56	A pilot plant technical assessment of an advanced in-duct desulphurisation process. Journal of Hazardous Materials, 2001, 83, 197-218.	12.4	14