Gillian Kay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7643858/publications.pdf

Version: 2024-02-01

		567281	752698
20	711	15	20 g-index
papers	citations	h-index	g-index
	=		
20 all docs	20 docs citations	20 times ranked	1137 citing authors

#	Article	IF	CITATIONS
1	Splicing to Keep Cycling: The Importance of Pre-mRNA Splicing during the Cell Cycle. Trends in Genetics, 2021, 37, 266-278.	6.7	26
2	KDM3A regulates alternative splicing of cell-cycle genes following DNA damage. Rna, 2021, 27, 1353-1362.	3.5	7
3	Splicing Factor Transcript Abundance in Saliva as a Diagnostic Tool for Breast Cancer. Genes, 2020, 11, 880.	2.4	5
4	Regulation of alternative splicing by p300-mediated acetylation of splicing factors. Rna, 2019, 25, 813-824.	3.5	31
5	Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor. Journal of Allergy and Clinical Immunology, 2017, 140, 204-214.e8.	2.9	24
6	FHL2 switches MITF from activator to repressor of Erbin expression during cardiac hypertrophy. International Journal of Cardiology, 2015, 195, 85-94.	1.7	15
7	Erbin is a negative modulator of cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5902-5907.	7.1	30
8	Mitochondrial STAT3 plays a major role in IgE-antigen–mediated mast cell exocytosis. Journal of Allergy and Clinical Immunology, 2014, 134, 460-469.e10.	2.9	62
9	Transcription factor E3, a major regulator of mast cell–mediated allergic response. Journal of Allergy and Clinical Immunology, 2012, 129, 1357-1366.e5.	2.9	27
10	Importin Beta Plays an Essential Role in the Regulation of the LysRS-Ap ₄ A Pathway in Immunologically Activated Mast Cells. Molecular and Cellular Biology, 2011, 31, 2111-2121.	2.3	16
11	The enigma of the role of Protein inhibitor of Activated STAT3 (PIAS3) in the immune response. Trends in Immunology, 2010, 31, 199-204.	6.8	48
12	A Specific Epitope of Protein Inhibitor of Activated STAT3 Is Responsible for the Induction of Apoptosis in Rat Transformed Mast Cells. Journal of Immunology, 2009, 182, 2168-2175.	0.8	18
13	LysRS Serves as a Key Signaling Molecule in the Immune Response by Regulating Gene Expression. Molecular Cell, 2009, 34, 603-611.	9.7	148
14	Chapter 1 The Physiological Role of Lysyl tRNA Synthetase in the Immune System. Advances in Immunology, 2009, 103, 1-27.	2.2	23
15	Diadenosine Tetraphosphate Hydrolase Is Part of the Transcriptional Regulation Network in Immunologically Activated Mast Cells. Molecular and Cellular Biology, 2008, 28, 5777-5784.	2.3	41
16	Microphthalmia Transcription Factor Isoforms in Mast Cells and the Heart. Molecular and Cellular Biology, 2007, 27, 3911-3919.	2.3	25
17	Inhibition of degranulation and interleukin-6 production in mast cells derived from mice deficient in protein kinase Cbeta. Blood, 2000, 95, 1752-7.	1.4	41
18	Nuclear translocation of upstream stimulating factor 2 (USF2) in activated mast cells: a possible role in their survival. Journal of Immunology, 1998, 161, 2881-7.	0.8	12

#	Article	IF	CITATIONS
19	Role of experimental conditions in determining differences in exploratory behavior of prenatally stressed rats. Developmental Psychobiology, 1996, 29, 453-462.	1.6	107
20	Effects of chronic α2-adrenoceptor blockade on platelet and lymphocyte adrenoceptor binding in normal volunteers. Life Sciences, 1991, 49, PL21-PL25.	4.3	5