
Mohammad Reza Milani Hosseini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7643620/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smartphone-based detection of lung cancer-related volatile organic compounds (VOCs) using rapid synthesized ZnO nanosheet. Sensors and Actuators B: Chemical, 2021, 344, 130127.	7.8	24
2	Application of ratiometric fluorescence sensor-based microwave-assisted synthesized CdTe quantum dots and mesoporous structured epitope-imprinted polymers for highly efficient determination of tyrosine phosphopeptide. Analytical Methods, 2020, 12, 63-72.	2.7	21
3	A 96-Monolithic inorganic hollow fiber array as a new geometry for high throughput solid-phase microextraction of doxorubicin in water and human urine samples coupled with liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2020, 1627, 461413.	3.7	9
4	Molecularly Imprinted Solâ€Gel Sensing Filmâ€Based Optical Sensor for Determination of Sulfasalazine Antibiotic. ChemistrySelect, 2020, 5, 13191-13197.	1.5	4
5	Screen-printed carbon electrode (SPCE) modified by molecularly imprinted polymer (MIP) nanoparticles and graphene nanosheets for determination of sertraline antidepressant drug. Microchemical Journal, 2020, 159, 105348.	4.5	43
6	Terbium metal–organic frameworks as capable electrodes for supercapacitors. New Journal of Chemistry, 2020, 44, 11615-11621.	2.8	13
7	A molecularly imprinted modified CdSeS/ZnS core–shell quantum dot embedded glass slide for highly selective and sensitive solid phase optosensing of trace amounts of lidocaine in biological samples. Analytical Methods, 2019, 11, 851-859.	2.7	3
8	Fabrication of an eco-friendly ratiometric fluorescence sensor-modified mesoporous-structured epitope-imprinted polymer for highly selective and sensitive determination of cytochrome c in biological samples. Analytical Methods, 2019, 11, 5919-5928.	2.7	10
9	Determination of psychotropic drug chlorpromazine using screen printed carbon electrodes modified with novel MIP-MWCNTs nano-composite prepared by suspension polymerization method. Sensors and Actuators B: Chemical, 2019, 288, 356-362.	7.8	38
10	A solid-phase luminescence sensor based on molecularly imprinted polymer-CdSeS/ZnS quantum dots for selective extraction and detection of sulfasalazine in biological samples. Talanta, 2019, 194, 534-541.	5.5	36
11	High sensitive and selective nano-molecularly imprinted polymer based electrochemical sensor for midazolam drug detection in pharmaceutical formulation and human urine samples. Sensors and Actuators B: Chemical, 2018, 273, 1579-1586.	7.8	49
12	Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples. Analytical and Bioanalytical Chemistry, 2016, 408, 6769-6779.	3.7	99
13	Electrochemical sensor based on a carbon paste electrode modified by graphene nanosheets and molecularly imprinted polymer nanoparticles for determination of a chlordiazepoxide drug. Analytical Methods, 2016, 8, 6305-6312.	2.7	19
14	Electroanalytical determination of diazepam in tablet and human serum samples using a multiwalled carbon nanotube embedded molecularly imprinted polymer-modified carbon paste electrode. RSC Advances, 2015, 5, 81650-81659.	3.6	24
15	Continuous sample drop flow-based microextraction method as a microextraction technique for determination of organic compounds in water sample. Talanta, 2014, 129, 309-314.	5.5	26
16	Preparation and utilization of microporous molecularly imprinted polymer for sustained release of tetracycline. Journal of Applied Polymer Science, 2013, 128, 1557-1562.	2.6	9
17	Bimetallic nanoparticles as a novel chemiresistor coating. Journal of the Iranian Chemical Society, 2013, 10, 783-789.	2.2	2
18	Electrooxidation of alcohols at a nickel oxide/multi-walled carbon nanotube-modified glassy carbon electrode. Journal of Applied Electrochemistry, 2013, 43, 1027-1033.	2.9	8

Mohammad Reza Milani

#	Article	IF	CITATIONS
19	A new application of functionalized platinum nanoparticles as chemiresistor coating. Measurement: Journal of the International Measurement Confederation, 2013, 46, 3328-3332.	5.0	7
20	Improved Homogeneous Liquid–Liquid Extraction Combined with GC–ECD for the Determination of Organochlorinated Pesticides in Water. Chromatographia, 2012, 75, 379-385.	1.3	7
21	New method based on combining ultrasonic assisted miniaturized matrix solid-phase dispersion and homogeneous liquid–liquid extraction for the determination of some organochlorinated pesticides in fish. Analytica Chimica Acta, 2011, 702, 274-279.	5.4	32
22	Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid–liquid microextraction. Food Chemistry, 2011, 126, 1840-1844.	8.2	152
23	Determination of As(III) using developed dispersive liquid–liquid microextraction and flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2011, 91, 1453-1465.	3.3	13
24	A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer. Electrochimica Acta, 2010, 55, 1503-1508.	5.2	109
25	Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry, 2010, 77, 120-124.	4.6	228
26	Dispersive Liquid–Liquid Microextraction of Silver Prior to Determination by Microsample Introduction-Flame Atomic Absorption Spectrometry. Analytical Letters, 2009, 42, 2214-2231.	1.8	33
27	Speciation of chromium in water samples using dispersive liquid–liquid microextraction and flame atomic absorption spectrometry. Mikrochimica Acta, 2009, 166, 69-75.	5.0	89
28	Development of dispersive liquid–liquid microextraction method for the analysis of organophosphorus pesticides in tea. Journal of Hazardous Materials, 2009, 169, 907-911.	12.4	114
29	Selenium analysis in water samples by dispersive liquid-liquid microextraction based on piazselenol formation and GC–ECD. Mikrochimica Acta, 2008, 163, 243-249.	5.0	81
30	Development of a dispersive liquid–liquid microextraction method for the determination of polychlorinated biphenyls in water. Journal of Hazardous Materials, 2008, 158, 621-627.	12.4	143
31	Combination of dispersive liquid–liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples. Analytica Chimica Acta, 2008, 610, 135-141.	5.4	138
32	Speciation of butyl and phenyltin compounds using dispersive liquid–liquid microextraction and gas chromatography-flame photometric detection. Journal of Chromatography A, 2008, 1193, 19-25.	3.7	95
33	Rapid determination of lead in water samples by dispersive liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry. Talanta, 2008, 75, 56-62.	5.5	146
34	Part-per-trillion determination of chlorobenzenes in water using dispersive liquid–liquid microextraction combined gas chromatography–electron capture detection. Talanta, 2007, 72, 387-393.	5.5	253
35	Determination of chlorophenols in water samples using simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography-electron-capture detection. Journal of Chromatography A, 2007, 1157, 23-29.	3.7	343
36	Solid-phase extraction combined with dispersive liquid–liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples. Journal of Chromatography A, 2007, 1169, 63-69.	3.7	171

3

#	Article	IF	CITATIONS
37	Dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometry. Analytica Chimica Acta, 2007, 585, 305-311.	5.4	377
38	Monitoring of selenium in water samples using dispersive liquid–liquid microextraction followed by iridium-modified tube graphite furnace atomic absorption spectrometry. Microchemical Journal, 2007, 87, 6-12.	4.5	178
39	Cloud-point extraction, preconcentration, and spectrophotometric determination of palladium in water samples. International Journal of Environmental Analytical Chemistry, 2006, 86, 1105-1112.	3.3	33
40	Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 2006, 579, 68-73.	5.4	134
41	Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 2006, 1116, 1-9.	3.7	3,021
42	Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection. Journal of Chromatography A, 2006, 1123, 1-9.	3.7	715