
Mohammad Ghalambaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7643380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity. International Journal of Heat and Mass Transfer, 2019, 138, 738-749.	2.5	270
2	Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. Journal of Thermal Analysis and Calorimetry, 2020, 139, 2321-2336.	2.0	252
3	Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. International Journal of Thermal Sciences, 2012, 54, 253-261.	2.6	218
4	Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 2019, 137, 965-982.	2.0	188
5	Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Advanced Powder Technology, 2017, 28, 2295-2305.	2.0	183
6	Numerical study on natural convection of Ag–MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model. Powder Technology, 2020, 367, 443-455.	2.1	163
7	Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Advanced Powder Technology, 2017, 28, 385-397.	2.0	161
8	Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity. International Journal of Thermal Sciences, 2020, 157, 106503.	2.6	157
9	Phase-change heat transfer in a cavity heated from below: The effect of utilizing single or hybrid nanoparticles as additives. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72, 104-115.	2.7	146
10	Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip. Physics of Fluids, 2017, 29, .	1.6	146
11	Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: Effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Advanced Powder Technology, 2015, 26, 935-946.	2.0	142
12	Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Applied Mathematical Modelling, 2020, 77, 1936-1953.	2.2	138
13	Effects of nanoparticles diameter and concentration on natural convection of the Al2O3–water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Advanced Powder Technology, 2015, 26, 224-235.	2.0	135
14	Melting of nanoparticles-enhanced phase-change materials in an enclosure: Effect of hybrid nanoparticles. International Journal of Mechanical Sciences, 2017, 134, 85-97.	3.6	135
15	Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam. International Journal of Heat and Mass Transfer, 2020, 146, 118832.	2.5	134
16	Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. Journal of Energy Storage, 2020, 28, 101236.	3.9	131
17	Forced convection heat transfer of Nano-Encapsulated Phase Change Material (NEPCM) suspension in a mini-channel heatsink. International Journal of Heat and Mass Transfer, 2020, 155, 119858.	2.5	130
18	Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. Journal of Molecular Liquids, 2019, 293, 111432	2.3	124

#	Article	IF	CITATIONS
19	MHD natural convection of Cu–Al2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1723-1743.	2.0	123
20	Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. International Journal of Thermal Sciences, 2017, 111, 256-273.	2.6	118
21	Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip. Journal of Mechanical Science and Technology, 2013, 27, 927-937.	0.7	117
22	Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension. International Journal of Mechanical Sciences, 2020, 166, 105243.	3.6	115
23	Local thermal non-equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag–MgO hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1381-1398.	2.0	114
24	Unsteady natural convection flow of a suspension comprising Nano-Encapsulated Phase Change Materials (NEPCMs) in a porous medium. Advanced Powder Technology, 2020, 31, 954-966.	2.0	108
25	Free Convection in a Parallelogrammic Porous Cavity Filled with a Nanofluid Using Tiwari and Das' Nanofluid Model. PLoS ONE, 2015, 10, e0126486.	1.1	95
26	Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. International Journal of Heat and Mass Transfer, 2019, 140, 331-345.	2.5	88
27	Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block. Journal of Advanced Research, 2021, 30, 63-74.	4.4	85
28	Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2). International Journal of Heat and Mass Transfer, 2020, 151, 119385.	2.5	84
29	Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno's model. Numerical Heat Transfer; Part A: Applications, 2018, 73, 254-276.	1.2	80
30	Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane. Journal of Magnetism and Magnetic Materials, 2017, 424, 161-173.	1.0	77
31	Free convective melting-solidification heat transfer of nano-encapsulated phase change particles suspensions inside a coaxial pipe. Advanced Powder Technology, 2020, 31, 4470-4481.	2.0	70
32	Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm). Energy, 2011, 36, 5649-5654.	4.5	69
33	Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno's and local thermal non-equilibrium models. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1047-1067.	2.0	69
34	Melting behavior of phase change materials in the presence of a non-uniform magnetic-field due to two variable magnetic sources. International Journal of Heat and Mass Transfer, 2020, 149, 119184.	2.5	68
35	Free convection heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a porous complex shaped cavity with MHD and thermal radiation effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4349-4376.	1.6	66
36	Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review. Journal of Molecular Liquids, 2021, 321, 114430.	2.3	63

#	Article	lF	CITATIONS
37	Free convection in a square cavity filled by a porous medium saturated by a nanofluid: Viscous dissipation and radiation effects. Engineering Science and Technology, an International Journal, 2016, 19, 1244-1253.	2.0	60
38	Natural convection of nanofluids in a cavity: criteria for enhancement of nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1504-1534.	1.6	60
39	Fluid-structure interaction in natural convection heat transfer in an oblique cavity with a flexible oscillating fin and partial heating. Applied Thermal Engineering, 2018, 145, 80-97.	3.0	55
40	Mixed convection and stability analysis of stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical plate. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 3737-3754.	1.6	53
41	Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives. Energy, 2020, 213, 118761.	4.5	53
42	MHD phase change heat transfer in an inclined enclosure: Effect of a magnetic field and cavity inclination. Numerical Heat Transfer; Part A: Applications, 2017, 71, 91-109.	1.2	52
43	Fluid–solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition. International Journal of Heat and Mass Transfer, 2016, 100, 303-319.	2.5	51
44	Free convection in a trapezoidal enclosure divided by a flexible partition. International Journal of Heat and Mass Transfer, 2020, 149, 119186.	2.5	51
45	Flow and heat transfer of nanofluids over stretching sheet taking into account partial slip and thermal convective boundary conditions. Heat and Mass Transfer, 2013, 49, 1357-1366.	1.2	47
46	Stagnation-point heat transfer of nanofluids toward stretching sheets with variable thermo-physical properties. Advanced Powder Technology, 2015, 26, 819-829.	2.0	47
47	Natural-Convection Flow of Nanofluids Over Vertical Cone Embedded in Non-Darcy Porous Media. Journal of Thermophysics and Heat Transfer, 2013, 27, 334-341.	0.9	46
48	Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids. Energies, 2019, 12, 541.	1.6	46
49	Natural-convection heat and mass transfer from a vertical cone in porous media filled with nanofluids using the practical ranges of nanofluids thermo-physical properties. Chemical Engineering Research and Design, 2014, 92, 447-452.	2.7	45
50	Location impact of a pair of magnetic sources on melting of a magneto-Ferro phase change substance. Chinese Journal of Physics, 2020, 65, 377-388.	2.0	45
51	Phase change heat transfer in an L-shape heatsink occupied with paraffin-copper metal foam. Applied Thermal Engineering, 2020, 177, 115493.	3.0	45
52	Entropy Generation and Natural Convection Flow of Hybrid Nanofluids in a Partially Divided Wavy Cavity Including Solid Blocks. Energies, 2020, 13, 2942.	1.6	44
53	Natural convection of a nanofluid in an enclosure with an inclined local thermal non-equilibrium porous fin considering Buongiorno's model. Numerical Heat Transfer; Part A: Applications, 2016, 70, 432-445.	1.2	43
54	Insight into the dynamics of ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) nanofluids inside a hexagonal cavity in the presence of a non-uniform magnetic field. Journal of Magnetism and Magnetic Materials, 2020, 497, 166024.	1.0	43

#	Article	IF	CITATIONS
55	Convective heat transfer of nano-encapsulated phase change material suspension in a divergent minichannel heatsink. International Journal of Heat and Mass Transfer, 2021, 165, 120717.	2.5	43
56	Mixed convection heat transfer by nanofluids in a cavity with two oscillating flexible fins: A fluid–structure interaction approach. Applied Mathematical Modelling, 2020, 82, 72-90.	2.2	42
57	Consecutive charging and discharging of a PCM-based plate heat exchanger with zigzag configuration. Applied Thermal Engineering, 2021, 193, 116970.	3.0	42
58	Using deep learning to learn physics of conduction heat transfer. Journal of Thermal Analysis and Calorimetry, 2021, 146, 1435-1452.	2.0	41
59	Role of Rotating Cylinder toward Mixed Convection inside a Wavy Heated Cavity via Two-Phase Nanofluid Concept. Nanomaterials, 2020, 10, 1138.	1.9	41
60	Melting process of the nano-enhanced phase change material (NePCM) in an optimized design of shell and tube thermal energy storage (TES): Taguchi optimization approach. Applied Thermal Engineering, 2021, 193, 116945.	3.0	40
61	Experimental study on fluid flow and heat transfer characteristics of falling film over tube bundle. International Journal of Heat and Mass Transfer, 2019, 130, 9-24.	2.5	39
62	Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System. Energies, 2021, 14, 1619.	1.6	39
63	Effects of Variable Viscosity and Thermal conductivity on Natural-Convection of Nanofluids Past a Vertical Plate in Porous Media. Journal of Mechanics, 2014, 30, 265-275.	0.7	38
64	Free convection in a square porous cavity filled with a nanofluid using thermal non equilibrium and Buongiorno models. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 671-693.	1.6	38
65	Pseudoplastic natural convection flow and heat transfer in a cylindrical vertical cavity partially filled with a porous layer. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 1096-1114.	1.6	38
66	Simultaneous and consecutive charging and discharging of a PCM-based domestic air heater with metal foam. Applied Thermal Engineering, 2021, 197, 117408.	3.0	38
67	A new approach to the electrostatic pull-in instability of nanocantilever actuators using the ADM–Padé technique. Computers and Mathematics With Applications, 2012, 64, 2806-2815.	1.4	37
68	Natural convection of nanofluid over vertical plate embedded in porous medium: prescribed surface heat flux. Applied Mathematics and Mechanics (English Edition), 2013, 34, 669-686.	1.9	37
69	Analyze of fluid flow and heat transfer of nanofluids over a stretching sheet near the extrusion slit. Computers and Fluids, 2014, 100, 227-236.	1.3	36
70	Influence of size effect and elastic boundary condition on the pull-in instability of nano-scale cantilever beams immersed in liquid electrolytes. International Journal of Non-Linear Mechanics, 2013, 52, 73-84.	1.4	34
71	Conjugate local thermal non-equilibrium heat transfer in a cavity filled with a porous medium: Analysis of the element location. International Journal of Heat and Mass Transfer, 2019, 138, 941-960.	2.5	34
72	Heat Transfer of Magnetohydrodynamic Viscous Nanofluids over an Isothermal Stretching Sheet. Journal of Thermophysics and Heat Transfer, 2012, 26, 686-689.	0.9	33

#	Article	IF	CITATIONS
73	Experimental and numerical study on convective boiling in a staggered array of micro pin-fin microgap. International Journal of Heat and Mass Transfer, 2020, 149, 119203.	2.5	33
74	Study of thermal and hydrodynamic characteristics of water-nano-encapsulated phase change particles suspension in an annulus of a porous eccentric horizontal cylinder. International Journal of Heat and Mass Transfer, 2020, 156, 119792.	2.5	33
75	A phase change/metal foam heatsink for thermal management of battery packs. International Journal of Thermal Sciences, 2020, 157, 106514.	2.6	32
76	Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium. Brazilian Journal of Chemical Engineering, 2014, 31, 413-427.	0.7	31
77	Experimental study of boiling heat transfer in a microchannel with nucleated-shape columnar micro-pin-fins. International Communications in Heat and Mass Transfer, 2019, 108, 104277.	2.9	30
78	Conjugate Phase Change Heat Transfer in an Inclined Compound Cavity Partially Filled with a Porous Medium: A Deformed Mesh Approach. Transport in Porous Media, 2020, 132, 657-681.	1.2	30
79	Controlling the natural convection of a non-Newtonian fluid using a flexible fin. Applied Mathematical Modelling, 2021, 92, 669-686.	2.2	29
80	Impact of particles tracking model of nanofluid on forced convection heat transfer within a wavy horizontal channel. International Communications in Heat and Mass Transfer, 2021, 122, 105176.	2.9	29
81	MHD natural convection phase-change heat transfer in a cavity: analysis of the magnetic field effect. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 2831-2846.	0.8	28
82	Experimental study on convective boiling flow and heat transfer in a microgap enhanced with a staggered arrangement of nucleated micro-pin-fins. International Journal of Heat and Mass Transfer, 2019, 144, 118653.	2.5	28
83	Thermo-hydrodynamic and entropy generation analysis of a dilute aqueous suspension enhanced with nano-encapsulated phase change material. International Journal of Mechanical Sciences, 2020, 178, 105609.	3.6	28
84	Numerical study of melting-process of a non-Newtonian fluid inside a metal foam. AEJ - Alexandria Engineering Journal, 2020, 59, 191-207.	3.4	26
85	Fluid–structure interaction analysis of free convection in an inclined square cavity partitioned by a flexible impermeable membrane with sinusoidal temperature heating. Meccanica, 2017, 52, 2685-2703.	1.2	25
86	Non-Newtonian behavior of an electrical and magnetizable phase change material in a filled enclosure in the presence of a non-uniform magnetic field. International Communications in Heat and Mass Transfer, 2020, 110, 104437.	2.9	25
87	Free convection of a suspension containing nano-encapsulated phase change material in a porous cavity; local thermal non-equilibrium model. Heliyon, 2020, 6, e03823.	1.4	24
88	Natural Convection Boundary Layer Flow over a Horizontal Plate Embedded in a Porous Medium Saturated with a Nanofluid: Case of Variable Thermophysical Properties. Transport in Porous Media, 2015, 107, 153-170.	1.2	23
89	Study of the boundary layer heat transfer of nanofluids over a stretching sheet: Passive control of nanoparticles at the surface. Canadian Journal of Physics, 2015, 93, 725-733.	0.4	23
90	Experimental study on convective boiling of micro-pin-finned channels with parallel arrangement fins for FC-72 dielectric fluid. International Journal of Heat and Mass Transfer, 2019, 138, 390-400.	2.5	23

#	Article	IF	CITATIONS
91	Paraffin core-polymer shell micro-encapsulated phase change materials and expanded graphite particles as an enhanced energy storage medium in heat exchangers. Advanced Powder Technology, 2020, 31, 2421-2429.	2.0	23
92	Effect of Twisted Fin Array in a Triple-Tube Latent Heat Storage System during the Charging Mode. Sustainability, 2021, 13, 2685.	1.6	23
93	Unsteady conjugate natural convection in a porous cavity boarded by two vertical finite thickness walls. International Communications in Heat and Mass Transfer, 2017, 81, 218-228.	2.9	22
94	Non-Newtonian phase-change heat transfer of nano-enhanced octadecane with mesoporous silica particles in a tilted enclosure using a deformed mesh technique. Applied Mathematical Modelling, 2020, 85, 318-337.	2.2	22
95	Localized heating element distribution in composite metal foamâ€phase change material: Fourier's law and creeping flow effects. International Journal of Energy Research, 2021, 45, 13380-13396.	2.2	22
96	Optimum design of a double elliptical latent heat energy storage system during the melting process. Journal of Energy Storage, 2021, 44, 103384.	3.9	22
97	Fluid–structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 2883-2911.	1.6	21
98	Fluid-structure interaction analysis of transient convection heat transfer in a cavity containing inner solid cylinder and flexible right wall. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 3756-3780.	1.6	21
99	Latest developments in nanofluid flow and heat transfer between parallel surfaces: A critical review. Advances in Colloid and Interface Science, 2021, 294, 102450.	7.0	21
100	Transient cooling characteristics of Al2O3-water nanofluid flow in a microchannel subject to a sudden-pulsed heat flux. International Journal of Mechanical Sciences, 2019, 151, 95-105.	3.6	20
101	An Analysis of Wind Speed Prediction Using Artificial Neural Networks: A Case Study in Manjil, Iran. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2012, 34, 636-644.	1.2	19
102	Competition of natural convection and thermal creep in a square enclosure. Physics of Fluids, 2020, 32, 102001.	1.6	19
103	Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification. Molecules, 2020, 25, 4643.	1.7	19
104	UNSTEADY FREE CONVECTION IN A SQUARE POROUS CAVITY SATURATED WITH NANOFLUID: THE CASE OF LOCAL THERMAL NONEQUILIBRIUM AND BUONGIORNO'S MATHEMATICAL MODELS. Journal of Porous Media, 2017, 20, 999-1016.	1.0	19
105	Natural convection in a triangular cavity filled with a nanofluid-saturated porous medium using three heat equation model. Canadian Journal of Physics, 2016, 94, 604-615.	0.4	18
106	Controlling the natural convection flow through a flexible baffle in an L-shaped enclosure. Meccanica, 2020, 55, 1561-1584.	1.2	17
107	Free Convection Heat Transfer and Entropy Generation in an Odd-Shaped Cavity Filled with a Cu-Al2O3 Hybrid Nanofluid. Symmetry, 2021, 13, 122.	1.1	16
108	Optimization of pulse current on energy storage of zinc-air flow batteries. Journal of Power Sources, 2019, 442, 227253.	4.0	15

#	Article	IF	CITATIONS
109	Impacts of the flexibility of a thin heater plate on the natural convection heat transfer. International Journal of Thermal Sciences, 2019, 145, 106001.	2.6	14
110	Melting heat transfer of a non-Newtonian phase change material in a cylindrical vertical-cavity partially filled porous media. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 3765-3789.	1.6	14
111	Free convection flow and heat transfer of nanofluids in a cavity with conjugate solid triangular blocks: Employing Buongiorno's mathematical model. Physica A: Statistical Mechanics and Its Applications, 2020, 538, 122826.	1.2	14
112	Fluid-structure interaction of a hot flexible thin plate inside an enclosure. International Journal of Thermal Sciences, 2020, 153, 106340.	2.6	14
113	Natural convection from a bottom heated of an asymmetrical U-shaped enclosure with nano-encapsulated phase change material. Journal of Energy Storage, 2021, 38, 102538.	3.9	14
114	Impacts of Non-Uniform Border Temperature Variations on Time-Dependent Nanofluid Free Convection within a Trapezium: Buongiorno's Nanofluid Model. Energies, 2019, 12, 1461.	1.6	13
115	Non-Newtonian phase change study of nano-enhanced n-octadecane comprising mesoporous silica in a porous medium. Applied Mathematical Modelling, 2021, 97, 463-482.	2.2	13
116	Study of tree-shaped optimized fins in a heat sink filled by solid-solid nanocomposite phase change material. International Communications in Heat and Mass Transfer, 2022, 136, 106195.	2.9	13
117	Nanofluid mixed convection inside wavy cavity with heat source: A non-homogeneous study. Case Studies in Thermal Engineering, 2022, 34, 102049.	2.8	12
118	Effects of flexible fin on natural convection in enclosure partially-filled with porous mediumâ~†. AEJ - Alexandria Engineering Journal, 2020, 59, 3515-3529.	3.4	11
119	Irreversibility analysis of thermally driven flow of a water-based suspension with dispersed nano-sized capsules of phase change material. International Journal of Heat and Mass Transfer, 2020, 155, 119796.	2.5	11
120	Study of paraffin-based composite-phase change materials for a shell and tube energy storage system: A mesh adaptation approach. Applied Thermal Engineering, 2021, 190, 116793.	3.0	11
121	A new power series solution on the electrostatic pull-in instability of nano cantilever actuators. Procedia Engineering, 2011, 10, 3708-3716.	1.2	10
122	Nonlinear oscillation of nanoelectro-mechanical resonators using energy balance method: considering the size effect and the van der Waals force. Applied Nanoscience (Switzerland), 2016, 6, 309-317.	1.6	10
123	Transient phase change heat transfer in a metal foam-phase change material heatsink subject to a pulse heat flux. Journal of Energy Storage, 2020, 31, 101701.	3.9	10
124	Thermal and hydrodynamic behavior of suspensions comprising nano-encapsulated phase change materials in a porous enclosure. International Communications in Heat and Mass Transfer, 2020, 116, 104634.	2.9	10
125	Natural convection of nanoencapsulated phase change suspensions inside a local thermal non-equilibrium porous annulus. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1801-1816.	2.0	10
126	Effects of operating parameters and load mode on dynamic cell performance of proton exchange membrane fuel cell. International Journal of Energy Research, 2021, 45, 2474-2487.	2.2	10

#	Article	IF	CITATIONS
127	Optimum Placement of Heating Tubes in a Multi-Tube Latent Heat Thermal Energy Storage. Materials, 2021, 14, 1232.	1.3	10
128	Optimization of the zinc oxide reduction in the charging process of zincâ€air flow batteries. International Journal of Energy Research, 2020, 44, 8399-8412.	2.2	10
129	Boundary layer flow heat and mass transfer study of Sakiadis flow of viscoelastic nanofluids using hybrid neural network-particle swarm optimization (HNNPSO). Thermal Science and Engineering Progress, 2017, 4, 150-159.	1.3	9
130	Free Convection in a Square Cavity Filled with a Tridisperse Porous Medium. Transport in Porous Media, 2017, 116, 379-392.	1.2	9
131	Fluid-structure interaction analysis of buoyancy-driven fluid and heat transfer through an enclosure with a flexible thin partition. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2072-2088.	1.6	9
132	Impact of Tube Bundle Placement on the Thermal Charging of a Latent Heat Storage Unit. Energies, 2021, 14, 1289.	1.6	9
133	Thermal vibrational and gravitational analysis of a hybrid aqueous suspension comprising Ag–MgO hybrid nano-additives. International Communications in Heat and Mass Transfer, 2021, 126, 105345.	2.9	9
134	Heat and mass transfer of evaporative cooler with elliptic tube heat exchangers- an experimental study. International Communications in Heat and Mass Transfer, 2021, 127, 105502.	2.9	9
135	A new solution on the buckling and stable length of multi wall carbon nanotube probes near graphite sheets. Procedia Engineering, 2011, 10, 3725-3733.	1.2	8
136	Balance dielectric layer for micro electrostatic switches in the presence of capillary effect. International Journal of Mechanical Sciences, 2013, 74, 83-90.	3.6	8
137	Pull-in instability of electrostatic doubly clamped nano actuators: Introduction of a balanced liquid layer (BLL). International Journal of Non-Linear Mechanics, 2014, 58, 128-138.	1.4	8
138	Integral treatment for forced convection heat and mass transfer of nanofluids over linear stretching sheet. Applied Mathematics and Mechanics (English Edition), 2015, 36, 337-352.	1.9	8
139	Cooling performance of Al2O3-water nanofluid flow in a minichannel with thermal buoyancy and wall conduction effects. Case Studies in Thermal Engineering, 2018, 12, 833-842.	2.8	8
140	Electromagnetic field analysis and cooling system design for high power switched reluctance motor. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 1756-1785.	1.6	8
141	Evaluation of the Melting Performance in a Conical Latent Heat Thermal Unit Having Variable Length Fins. Sustainability, 2021, 13, 2667.	1.6	8
142	Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam. Molecules, 2021, 26, 1491.	1.7	8
143	Numerical Investigation of Mixing by Induced Electrokinetic Flow in T-Micromixer with Conductive Curved Arc Plate. Symmetry, 2021, 13, 915.	1.1	8
144	Charging optimization of multi-tube latent heat storage comprising composite aluminum foam/nano-enhanced coconut oil. International Journal of Heat and Mass Transfer, 2021, 180, 121757.	2.5	8

#	Article	IF	CITATIONS
145	Transient melting flow of a NePCM comprising GNPs in a semi-elliptical latent heat thermal energy storage unit. International Communications in Heat and Mass Transfer, 2022, 130, 105815.	2.9	8
146	Convection Heat Transfer in 3D Wavy Direct Absorber Solar Collector Based on Two-Phase Nanofluid Approach. Applied Sciences (Switzerland), 2020, 10, 7265.	1.3	7
147	Effects of reformate on performance of PBI/H3PO4 proton exchange membrane fuel cell stack. International Journal of Hydrogen Energy, 2020, 45, 15346-15357.	3.8	7
148	Influence of the Fin Shape on Heat Transport in Phase Change Material Heat Sink with Constant Heat Loads. Energies, 2021, 14, 1389.	1.6	7
149	Energy transport of wavy non-homogeneous hybrid nanofluid cavity partially filled with porous LTNE layer. Journal of Petroleum Science and Engineering, 2022, 208, 109655.	2.1	7
150	A new analytic solution for buckling of doubly clamped nano-actuators with integro differential governing equation using Duan–Rach Adomian decomposition method. Applied Mathematical Modelling, 2016, 40, 7293-7302.	2.2	6
151	Free convective heat transfer of a non-Newtonian fluid in a cavity containing a thin flexible heater plate: an Eulerian–Lagrangian approach. Journal of Thermal Analysis and Calorimetry, 2022, 147, 1809-1824.	2.0	6
152	Numerical Modeling and Investigation of Amperometric Biosensors with Perforated Membranes. Sensors, 2020, 20, 2910.	2.1	6
153	The Effect of Variable-Length Fins and Different High Thermal Conductivity Nanoparticles in the Performance of the Energy Storage Unit Containing Bio-Based Phase Change Substance. Sustainability, 2021, 13, 2884.	1.6	6
154	Latent Heat Thermal Storage of Nano-Enhanced Phase Change Material Filled by Copper Foam with Linear Porosity Variation in Vertical Direction. Energies, 2021, 14, 1508.	1.6	6
155	Role of fluid-structure interaction in free convection in square open cavity with double flexible oscillating fins. AEJ - Alexandria Engineering Journal, 2022, 61, 1217-1234.	3.4	6
156	Local thermal nonequilibrium conjugate natural convection of nanoâ€encapsulated phase change particles in a partially porous enclosure. Mathematical Methods in the Applied Sciences, 0, , .	1.2	5
157	Phase-Transition Thermal Charging of a Channel-Shape Thermal Energy Storage Unit: Taguchi Optimization Approach and Copper Foam Inserts. Molecules, 2021, 26, 1235.	1.7	5
158	Latent Heat Phase Change Heat Transfer of a Nanoliquid with Nano–Encapsulated Phase Change Materials in a Wavy-Wall Enclosure with an Active Rotating Cylinder. Sustainability, 2021, 13, 2590.	1.6	5
159	A novel geometrical design of gasâ€ŧoâ€gas planar membrane humidifier for proton electrolyte membrane fuel cells. International Journal of Energy Research, 2021, 45, 16228-16241.	2.2	5
160	New loss functions to improve deep learning estimation of heat transfer. Neural Computing and Applications, 2022, 34, 15889-15906.	3.2	5
161	The Thermal Charging Performance of Finned Conical Thermal Storage System Filled with Nano-Enhanced Phase Change Material. Molecules, 2021, 26, 1605.	1.7	4
162	Simulation of a Fast-Charging Porous Thermal Energy Storage System Saturated with a Nano-Enhanced Phase Change Material. Energies, 2021, 14, 1575.	1.6	4

#	Article	IF	CITATIONS
163	Thermal Charging Optimization of a Wavy-Shaped Nano-Enhanced Thermal Storage Unit. Molecules, 2021, 26, 1496.	1.7	4
164	Flow field analysis of an elliptical moving belt in transitional flow regime. European Physical Journal Plus, 2021, 136, 1.	1.2	4
165	A Hybrid Power Series Artificial Bee Colony Algorithm to Obtain a Solution for Buckling of Multiwall Carbon Nanotube Cantilevers Near Small Layers of Graphite Sheets. Applied Computational Intelligence and Soft Computing, 2012, 2012, 1-6.	1.6	3
166	Latent Heat Thermal Storage in Non-Uniform Metal Foam Filled with Nano-Enhanced Phase Change Material. Sustainability, 2021, 13, 2401.	1.6	3
167	Melting phase change heat transfer in a quasi-petal tube thermal energy storage unit. PLoS ONE, 2021, 16, e0246972.	1.1	3
168	A Deflection of Nano-Cantilevers Using Monotone Solution. Procedia Engineering, 2011, 10, 3717-3724.	1.2	2
169	Effect of Dielectric-Layer on the Stress Field of Micro Cantilever Beams at the Onset of Pull-In Instability. Journal of Mechanics, 2014, 30, 49-56.	0.7	2
170	Thermal convection and radiation in a rotating cabinet with time-dependent heat-generated solid element and heat-conducting solid walls. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 3527-3546.	1.6	2
171	STUDY OF THE FLOW AND HEAT TRANSFER OF A VISCOELASTIC FLUID USING HYBRID NEURAL NETWORK-PARTICLE SWARM OPTIMIZATION (HNNPSO). Journal of Thermal Engineering, 0, , 791-805.	0.8	2
172	Estimating Relaxation Time and Fractionality Order Parameters in Fractional Non-Fourier Heat Conduction Using Conjugate Gradient Inverse Approach in Single and Three-Layer Skin Tissues. Processes, 2021, 9, 1877.	1.3	2
173	A new solution for natural convection about a vertical cone embedded in porous media prescribed wall temperature using, power series - Pade. Procedia Engineering, 2011, 10, 3741-3749.	1.2	1
174	Effect of the Quasi-Petal Heat Transfer Tube on the Melting Process of the Nano-Enhanced Phase Change Substance in a Thermal Energy Storage Unit. Sustainability, 2021, 13, 2871.	1.6	1
175	MULTISCALE APPROACH OF THE EQUIVALENT THERMAL CONDUCTIVITY OF MODIFIED FOAM-FILLED AND NON-FILLED HOLLOW BRICK AND A BRICK WALL. Journal of Thermal Engineering, 0, , 190-203.	0.8	1
176	Unsteady natural convection of nano-encapsulated phase change materials (NEPCMs) inside a random porous medium considering local thermal non-equilibrium condition. Waves in Random and Complex Media, 0, , 1-22.	1.6	1
177	The magnetic field on thermosolutal convection in an annulus between two super ellipses. Waves in Random and Complex Media, 0, , 1-20.	1.6	0