List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7643310/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | FluidFM for single-cell biophysics. Nano Research, 2022, 15, 773-786.                                                                                                      | 10.4 | 33        |
| 2  | Playing with sizes and shapes of colloidal particles via dry etching methods. Advances in Colloid and<br>Interface Science, 2022, 299, 102538.                             | 14.7 | 20        |
| 3  | Electrochemical 3D micro―and nanoprinting: Current state and future perspective. Electrochemical<br>Science Advances, 2022, 2, .                                           | 2.8  | 10        |
| 4  | Manipulating the morphology of colloidal particles via ion beam irradiation: A route to anisotropic shaping. Advances in Colloid and Interface Science, 2022, 304, 102642. | 14.7 | 6         |
| 5  | Injection into and extraction from single fungal cells. Communications Biology, 2022, 5, 180.                                                                              | 4.4  | 11        |
| 6  | Electrochemical 3D printing of Ni–Mn and Ni–Co alloy with FluidFM. Nanotechnology, 2022, 33, 265301.                                                                       | 2.6  | 5         |
| 7  | Electrochemical 3D printing of silver and nickel microstructures with FluidFM. Additive Manufacturing, 2022, 53, 102718.                                                   | 3.0  | 2         |
| 8  | Mitochondria transplantation between living cells. PLoS Biology, 2022, 20, e3001576.                                                                                       | 5.6  | 28        |
| 9  | Surface Vacancy Generation by STM Tunneling Electrons in the Presence of Indigo Molecules on Cu(111). Journal of Physical Chemistry C, 2022, 126, 14103-14115.             | 3.1  | 3         |
| 10 | Mechanical Fingerprint of Senescence in Endothelial Cells. Nano Letters, 2021, 21, 4911-4920.                                                                              | 9.1  | 27        |
| 11 | Probing the interactions between air bubbles and (bio)interfaces at the nanoscale using FluidFM technology. Journal of Colloid and Interface Science, 2021, 604, 785-797.  | 9.4  | 14        |
| 12 | Bringing Electrochemical Three-Dimensional Printing to the Nanoscale. Nano Letters, 2021, 21, 9093-9101.                                                                   | 9.1  | 46        |
| 13 | Integration of silver nanowires into SU-8 hollow cantilevers for piezoresistive-based sensing.<br>Sensors and Actuators A: Physical, 2020, 301, 111748.                    | 4.1  | 4         |
| 14 | Multiscale Additive Manufacturing of Metal Microstructures. Advanced Engineering Materials, 2020, 22, 1900961.                                                             | 3.5  | 36        |
| 15 | Additive Manufacturing of Sub-Micron to Sub-mm Metal Structures with Hollow AFM Cantilevers.<br>Micromachines, 2020, 11, 6.                                                | 2.9  | 31        |
| 16 | Pattern detection in colloidal assembly: A mosaic of analysis techniques. Advances in Colloid and<br>Interface Science, 2020, 284, 102252.                                 | 14.7 | 42        |
| 17 | Force-Controlled Formation of Dynamic Nanopores for Single-Biomolecule Sensing and Single-Cell<br>Secretomics. ACS Nano, 2020, 14, 12993-13003.                            | 14.6 | 9         |
| 18 | Shape Deformation in Ion Beam Irradiated Colloidal Monolayers: An AFM Investigation. Nanomaterials, 2020, 10, 453.                                                         | 4.1  | 10        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Metals by Microâ€Scale Additive Manufacturing: Comparison of Microstructure and Mechanical<br>Properties. Advanced Functional Materials, 2020, 30, 1910491.                                                                | 14.9 | 52        |
| 20 | A Journey Through the Landscapes of Small Particles in Binary Colloidal Assemblies: Unveiling<br>Structural Transitions from Isolated Particles to Clusters upon Variation in Composition.<br>Nanomaterials, 2019, 9, 921. | 4.1  | 19        |
| 21 | Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nature Nanotechnology, 2019, 14, 791-798.                                                                               | 31.5 | 49        |
| 22 | A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME Journal, 2019, 13, 1878-1882.                                         | 9.8  | 32        |
| 23 | SU-8 Micropipettes for Gentle Single-cell Manipulation. Chimia, 2019, 73, 1033.                                                                                                                                            | 0.6  | 1         |
| 24 | FluidFM Applications in Single-Cell Biology. , 2018, , 325-354.                                                                                                                                                            |      | 7         |
| 25 | Local Chemical Stimulation of Neurons with the Fluidic Force Microscope (FluidFM). ChemPhysChem, 2018, 19, 1234-1244.                                                                                                      | 2.1  | 14        |
| 26 | Simultaneous scanning ion conductance and atomic force microscopy with a nanopore: Effect of the aperture edge on the ion current images. Journal of Applied Physics, 2018, 124, .                                         | 2.5  | 12        |
| 27 | Combined Ion Conductance and Atomic Force Microscope for Fast Simultaneous Topographical and Surface Charge Imaging. Analytical Chemistry, 2018, 90, 11453-11460.                                                          | 6.5  | 17        |
| 28 | Bioinspired, nanoscale approaches in contemporary bioanalytics (Review). Biointerphases, 2018, 13, 040801.                                                                                                                 | 1.6  | 12        |
| 29 | Force controlled SU-8 micropipettes fabricated with a sideways process. Journal of Micromechanics and Microengineering, 2018, 28, 095015.                                                                                  | 2.6  | 6         |
| 30 | Pattern Formation in Binary Colloidal Assemblies: Hidden Symmetries in a Kaleidoscope of Structures.<br>Langmuir, 2018, 34, 7827-7843.                                                                                     | 3.5  | 28        |
| 31 | Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists. Advances in<br>Colloid and Interface Science, 2017, 246, 217-274.                                                                      | 14.7 | 153       |
| 32 | Extending the limits of direct force measurements: colloidal probes from sub-micron particles.<br>Nanoscale, 2017, 9, 9491-9501.                                                                                           | 5.6  | 31        |
| 33 | Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy.<br>Analytical Chemistry, 2017, 89, 5017-5023.                                                                          | 6.5  | 90        |
| 34 | Cell Adhesion on Dynamic Supramolecular Surfaces Probed by Fluid Force Microscopy-Based<br>Single-Cell Force Spectroscopy. ACS Nano, 2017, 11, 3867-3874.                                                                  | 14.6 | 31        |
| 35 | Additive Manufacturing of Metal Structures at the Micrometer Scale. Advanced Materials, 2017, 29, 1604211.                                                                                                                 | 21.0 | 279       |
| 36 | Mechanical force induces mitochondrial fission. ELife, 2017, 6, .                                                                                                                                                          | 6.0  | 125       |

| #  | Article                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Force-controlled electrophysiology. BIO Web of Conferences, 2016, 6, 01002.                                                                                         | 0.2  | 0         |
| 38 | Templateâ€Free 3D Microprinting of Metals Using a Forceâ€Controlled Nanopipette for Layerâ€byâ€Layer<br>Electrodeposition. Advanced Materials, 2016, 28, 2311-2315. | 21.0 | 141       |
| 39 | Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy.<br>Biointerphases, 2016, 11, 011004.                         | 1.6  | 26        |
| 40 | SU-8 hollow cantilevers for AFM cell adhesion studies. Journal of Micromechanics and Microengineering, 2016, 26, 055006.                                            | 2.6  | 29        |
| 41 | Self-Assembly of Single-Sized and Binary Colloidal Particles at Air/Water Interface by Surface Confinement and Water Discharge. Langmuir, 2016, 32, 9582-9590.      | 3.5  | 70        |
| 42 | Serial weighting of micro-objects with resonant microchanneled cantilevers. Nanotechnology, 2016, 27, 415502.                                                       | 2.6  | 11        |
| 43 | Tunable Single-Cell Extraction for Molecular Analyses. Cell, 2016, 166, 506-516.                                                                                    | 28.9 | 155       |
| 44 | Controlled single-cell deposition and patterning by highly flexible hollow cantilevers. Lab on A Chip, 2016, 16, 1663-1674.                                         | 6.0  | 27        |
| 45 | Simultaneous Scanning Ion Conductance Microscopy and Atomic Force Microscopy with Microchanneled Cantilevers. Physical Review Letters, 2015, 115, 238103.           | 7.8  | 33        |
| 46 | Bacterial adhesion force quantification by fluidic force microscopy. Nanoscale, 2015, 7, 4070-4079.                                                                 | 5.6  | 72        |
| 47 | Force-Controlled Patch Clamp of Beating Cardiac Cells. Nano Letters, 2015, 15, 1743-1750.                                                                           | 9.1  | 62        |
| 48 | Local surface modification via confined electrochemical deposition with FluidFM. RSC Advances, 2015, 5, 84517-84522.                                                | 3.6  | 37        |
| 49 | Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene. Journal of<br>Colloid and Interface Science, 2015, 447, 202-210.            | 9.4  | 26        |
| 50 | Isolation of single mammalian cells from adherent cultures by fluidic force microscopy. Lab on A<br>Chip, 2014, 14, 402-414.                                        | 6.0  | 45        |
| 51 | Toward a Rational Design of Surface Textures Promoting Endothelialization. Nano Letters, 2014, 14, 1069-1079.                                                       | 9.1  | 61        |
| 52 | Force-controlled manipulation of single cells: from AFM to FluidFM. Trends in Biotechnology, 2014, 32, 381-388.                                                     | 9.3  | 190       |
| 53 | Exchangeable Colloidal AFM Probes for the Quantification of Irreversible and Long-Term Interactions.<br>Biophysical Journal, 2013, 105, 463-472.                    | 0.5  | 43        |
| 54 | Microfluidics: Force ontrolled Fluidic Injection into Single Cell Nuclei (Small 11/2013). Small, 2013, 9,<br>1870-1870.                                             | 10.0 | 1         |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Forceâ€Controlled Fluidic Injection into Single Cell Nuclei. Small, 2013, 9, 1904-1907.                                                                                                                                      | 10.0 | 70        |
| 56 | Isolation of Optically Targeted Single Bacteria by Application of Fluidic Force Microscopy to Aerobic<br>Anoxygenic Phototrophs from the Phyllosphere. Applied and Environmental Microbiology, 2013, 79,<br>4895-4905.       | 3.1  | 44        |
| 57 | A universal method for planar lipid bilayer formation by freeze and thaw. Soft Matter, 2012, 8, 5525.                                                                                                                        | 2.7  | 21        |
| 58 | Cooperative Vaccinia Infection Demonstrated at the Single-Cell Level Using FluidFM. Nano Letters, 2012, 12, 4219-4227.                                                                                                       | 9.1  | 57        |
| 59 | Electrochemically driven delivery to cells from vesicles embedded in polyelectrolyte multilayers.<br>Soft Matter, 2012, 8, 3641.                                                                                             | 2.7  | 21        |
| 60 | Effect of polyelectrolyte interdiffusion on electron transport in redox-active polyelectrolyte multilayers. Journal of Materials Chemistry, 2012, 22, 11073.                                                                 | 6.7  | 40        |
| 61 | Rapid and Serial Quantification of Adhesion Forces of Yeast and Mammalian Cells. PLoS ONE, 2012, 7, e52712.                                                                                                                  | 2.5  | 106       |
| 62 | Spontaneous Formation of a Vesicle Multilayer on Top of an Exponentially Growing Polyelectrolyte<br>Multilayer Mediated by Diffusing Poly- <scp>l</scp> -lysine. Journal of Physical Chemistry B, 2011, 115,<br>12386-12391. | 2.6  | 14        |
| 63 | Electrochemically Stimulated Release from Liposomes Embedded in a Polyelectrolyte Multilayer.<br>Advanced Functional Materials, 2011, 21, 1666-1672.                                                                         | 14.9 | 28        |
| 64 | Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology. Applied Physics Letters, 2010, 97, .                                                                     | 3.3  | 80        |
| 65 | Global and local view on the electrochemically induced degradation of polyelectrolyte multilayers: from dissolution to delamination. Soft Matter, 2010, 6, 4246.                                                             | 2.7  | 26        |
| 66 | STM images of a large organic molecule adsorbed on a bare metal substrate or on a thin insulating layer: Visualization of HOMO and LUMO. Surface Science, 2009, 603, 1526-1532.                                              | 1.9  | 46        |
| 67 | FluidFM: Combining Atomic Force Microscopy and Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond. Nano Letters, 2009, 9, 2501-2507.                                                 | 9.1  | 369       |
| 68 | Electrochemical tuning of the stability of PLL/DNA multilayers. Soft Matter, 2009, 5, 2415.                                                                                                                                  | 2.7  | 39        |
| 69 | Swelling and Contraction of Ferrocyanide-Containing Polyelectrolyte Multilayers upon Application of an Electric Potential. Langmuir, 2008, 24, 13668-13676.                                                                  | 3.5  | 60        |
| 70 | A local view on hyperconjugation. Chemical Physics Letters, 2007, 450, 107-111.                                                                                                                                              | 2.6  | 37        |
| 71 | FluidFM: Development of the Instrument as well as Its Applications for 2D and 3D Lithography. , 0, , 295-323.                                                                                                                |      | 11        |