Zhi Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7643115/publications.pdf

Version: 2024-02-01

196777 242451 2,472 69 29 47 citations h-index g-index papers 71 71 71 3229 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unveiling the role of surface heterostructure in Bi0.5Y0.5VO4 solid solution for photocatalytic overall water splitting. Journal of Catalysis, 2022, 406, 193-205.	3.1	8
2	In-situ pressure-induced BiVO4/Bi0.6Y0.4VO4 S-scheme heterojunction for enhanced photocatalytic overall water splitting activity. Chinese Journal of Catalysis, 2022, 43, 316-328.	6.9	31
3	Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water splitting. Frontiers in Energy, 2022, 16, 49-63.	1.2	16
4	In situ revealing the reconstruction behavior of monolayer rocksalt CoO nanosheet as water oxidation catalyst. Journal of Energy Chemistry, 2022, 70, 373-381.	7.1	16
5	Reaction mechanism of toluene decomposition in non-thermal plasma: How does it compare with benzene?. Fundamental Research, 2022, , .	1.6	5
6	Catalytic oxidation of dimethyl phthalate over titania-supported noble metal catalysts. Journal of Hazardous Materials, 2021, 401, 123274.	6.5	15
7	Photocatalytic oxidation behaviors of Di-2-ethylhexyl phthalate over Pt/TiO2. Catalysis Today, 2021, 376, 104-112.	2.2	7
8	Enhanced photocatalytic overall water splitting via MOF-derived tetragonal BiVO4-based solid solution. Chemical Engineering Journal, 2021, 414, 128911.	6.6	23
9	Photocatalysis: from solar light to hydrogen energy. Frontiers in Energy, 2021, 15, 565-567.	1.2	6
10	Benzene decomposition by non-thermal plasma: A detailed mechanism study by synchrotron radiation photoionization mass spectrometry and theoretical calculations. Journal of Hazardous Materials, 2021, 420, 126584.	6.5	120
11	Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@Zn Cd1-S: Solid-solution-assisted photocatalysis. Chinese Journal of Catalysis, 2020, 41, 103-113.	6.9	83
12	In situ one-pot fabrication of MoO3â^'x clusters modified polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Chinese Journal of Chemical Physics, 2020, 33, 491-499.	0.6	0
13	Polyoxometalate Template-Based Synthetic Strategy to Prepare Ni, Mo Co-Doped CdS for Efficient Photocatalytic Hydrogen Evolution from Water Splitting. Catalysts, 2020, 10, 1478.	1.6	6
14	Efficient visible light photocatalysis enabled by the interaction between dual cooperative defect sites. Applied Catalysis B: Environmental, 2020, 274, 119099.	10.8	34
15	Enhanced twisting degree assisted overall water splitting on a novel nano-dodecahedron BiVO4-based heterojunction. Applied Catalysis B: Environmental, 2020, 266, 118664.	10.8	28
16	Impact of Methanol Photomediated Surface Defects on Photocatalytic H ₂ Production Over Pt/TiO ₂ . Energy and Environmental Materials, 2020, 3, 202-208.	7.3	27
17	Catalytic Materials for Simultaneous NOx–Soot Removal. Energy and Environment Research in China, 2019, , 9-69.	2.3	0
18	Kinetics Study for Simultaneous Removal of Soot and NOx. Energy and Environment Research in China, 2019, , 71-100.	2.3	1

#	Article	IF	CITATIONS
19	Photocatalytic hydrogen energy evolution from antibiotic wastewater <i>via</i> metallic bi nanosphere doped g-C ₃ N ₄ : performances and mechanisms. Catalysis Science and Technology, 2019, 9, 5279-5291.	2.1	26
20	One-pot synthesized visible-light-responsive MoS2@CdS nanosheets-on- nanospheres for hydrogen evolution from the antibiotic wastewater: Waste to energy insight. International Journal of Hydrogen Energy, 2019, 44, 21577-21587.	3.8	26
21	Enhanced Photocatalytic Hydrogen Evolution of the Hydrogenated Deficient gâ€C ₃ N ₄ via Surface Hydrotreating. ChemCatChem, 2019, 11, 6275-6281.	1.8	19
22	Simultaneous catalytic elimination of formaldehyde and ozone over oneâ€dimensional rodâ€like manganese dioxide at ambient temperature. Journal of Chemical Technology and Biotechnology, 2019, 94, 2305-2317.	1.6	14
23	Photocatalytic overall water splitting on isolated semiconductor photocatalyst sites in an ordered mesoporous silica matrix: A multiscale strategy. Journal of Catalysis, 2019, 370, 210-223.	3.1	20
24	Photocatalytic hydrogen evolution with simultaneous antibiotic wastewater degradation via the visible-light-responsive bismuth spheres-g-C3N4 nanohybrid: Waste to energy insight. Chemical Engineering Journal, 2019, 358, 944-954.	6.6	102
25	Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution. Catalysis Today, 2019, 327, 323-333.	2.2	60
26	Trifunctional C@MnO Catalyst for Enhanced Stable Simultaneously Catalytic Removal of Formaldehyde and Ozone. ACS Catalysis, 2018, 8, 3164-3180.	5.5	80
27	New insight into the enhanced activity of ordered mesoporous nickel oxide in formaldehyde catalytic oxidation reactions. Journal of Catalysis, 2018, 361, 370-383.	3.1	63
28	Metallic 1T-Li _x MoS ₂ co-catalyst enhanced photocatalytic hydrogen evolution over Znln ₂ S ₄ floriated microspheres under visible light irradiation. Catalysis Science and Technology, 2018, 8, 1375-1382.	2.1	31
29	Zinc-doped g-C3N4/BiVO4 as a Z-scheme photocatalyst system for water splitting under visible light. Chinese Journal of Catalysis, 2018, 39, 472-478.	6.9	51
30	Enhanced photocatalytic hydrogen evolution using a novel in situ heterojunction yttrium-doped Bi4NbO8Cl@Nb2O5. International Journal of Hydrogen Energy, 2018, 43, 14281-14292.	3.8	34
31	Efficient photocatalytic hydrogen evolution on N-deficient g-C3N4 achieved by a molten salt post-treatment approach. Applied Catalysis B: Environmental, 2018, 238, 465-470.	10.8	207
32	Photo-switchable pure water splitting under visible light over nano-Pt@P25 by recycling scattered photons. Applied Catalysis B: Environmental, 2018, 236, 140-146.	10.8	15
33	Sizeâ€Dependent Visible Light Photocatalytic Performance of Cu ₂ O Nanocubes. ChemCatChem, 2018, 10, 3554-3563.	1.8	44
34	A visible-light driven novel layered perovskite oxyhalide Bi ₄ MO ₈ X (M = Nb, Ta;) Tj ETQo Catalysis Science and Technology, 2018, 8, 3774-3784.	q0 0 0 rgB 2.1	T /Overlock 1 49
35	BixY1â^'xVO4 solid solution with porous surface synthesized by molten salt method for photocatalytic water splitting. International Journal of Hydrogen Energy, 2017, 42, 6519-6525.	3.8	16
36	Effect of Surface Self-Heterojunction Existed in Bi _{<i>x</i>} Y _{1â€"<i>x</i>} VO ₄ on Photocatalytic Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 6578-6584.	3.2	26

#	Article	IF	CITATIONS
37	Novel (Na, O) co-doped g-C 3 N 4 with simultaneously enhanced absorption and narrowed bandgap for highly efficient hydrogen evolution. Applied Catalysis B: Environmental, 2017, 209, 631-636.	10.8	131
38	The role of metal oxide interactions: revisiting Pt growth on the TiO ₂ surface in the process of impregnation method. Nanoscale, 2017, 9, 14272-14279.	2.8	22
39	Surface sodium functionalization of ordered mesoporous Co ₃ O ₄ controls the enhanced simultaneous catalytic removal of soot and NOx. Journal of Materials Chemistry A, 2017, 5, 20696-20708.	5.2	36
40	Active Site Elucidation and Optimization in Pt Coâ€catalysts for Photocatalytic Hydrogen Production over Titania. ChemCatChem, 2017, 9, 4268-4274.	1.8	21
41	Novel dodecahedron BiVO4:YVO4 solid solution with enhanced charge separation on adjacent exposed facets for highly efficient overall water splitting. Journal of Catalysis, 2017, 352, 155-159.	3.1	60
42	Photodeposition as a facile route to tunable Pt photocatalysts for hydrogen production: on the role of methanol. Catalysis Science and Technology, 2016, 6, 81-88.	2.1	65
43	Catalysis Removal of Indoor Volatile Organic Compounds in Room Temperature: From Photocatalysis to Active Species Assistance Catalysis. Catalysis Surveys From Asia, 2015, 19, 1-16.	1.0	27
44	Nickels/CdS photocatalyst prepared by flowerlike Ni/Ni(OH) 2 precursor for efficiently photocatalytic H 2 evolution. International Journal of Hydrogen Energy, 2015, 40, 998-1004.	3.8	41
45	Rational removal of stabilizer-ligands from platinum nanoparticles supported on photocatalysts by self-photocatalysis degradation. Catalysis Today, 2015, 242, 372-380.	2.2	21
46	Characterization and performance of Pt/SBA-15 for low-temperature SCR of NO by C3H6. Journal of Environmental Sciences, 2013, 25, 1023-1033.	3.2	8
47	Controllable O2•â^' oxidization graphene in TiO2/graphene composite and its effect on photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2013, 38, 13110-13116.	3.8	22
48	Low-temperature synthesis of stable nanoTiO2–rGO composite colloids and their application in photoelectric films. RSC Advances, 2013, 3, 8559.	1.7	8
49	In situ controllable synthesis platinum nanocrystals on TiO2 by novel polyol-process combined with light induced photocatalysis oxidation. Chemical Communications, 2012, 48, 9598.	2.2	15
50	Influence of Support and Metal Precursor on the State and CO Catalytic Oxidation Activity of Platinum Supported on TiO ₂ . Journal of Physical Chemistry C, 2012, 116, 19396-19404.	1.5	36
51	Roles of Bi, M and VO4 tetrahedron in photocatalytic properties of novel Bi0.5M0.5VO4 (M=La, Eu, Sm) Tj ETQq1	1,0,78431 1.4	14.rgBT /O∨
52	Low-Temperature Performance of Pt/TiO ₂ for Selective Catalytic Reduction of Low Concentration NO by C ₃ H ₆ . Industrial & Description of Low 2011, 50, 7866-7873.	1.8	7
53	Adsorption of NO Molecule on Spinel-Type CuFe ₂ O ₄ Surface: A First-Principles Study. Journal of Physical Chemistry C, 2011, 115, 13035-13040.	1.5	54
54	Novel photocatalyst of V-based solid solutions for overall water splitting. Journal of Materials Chemistry, 2011, 21, 16535.	6.7	58

#	Article	IF	Citations
55	Low-temperature selective catalytic reduction of NO with propylene in excess oxygen over the Pt/ZSM-5 catalyst. Journal of Hazardous Materials, 2011, 193, 330-334.	6.5	23
56	Synergetic catalytic performance of TiO2/MCMâ€41 for ozoneâ€assisted photocatalytic degradation of gaseous acetaldehyde. Environmental Technology (United Kingdom), 2011, 32, 307-316.	1.2	15
57	Performance and mechanism study for low-temperature SCR of NO with propylene in excess oxygen over Pt/TiO2 catalyst. Journal of Environmental Sciences, 2010, 22, 1441-1446.	3.2	16
58	Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure. Nanotechnology, 2008, 19, 095606.	1.3	48
59	Fully Dense, Aluminum-Rich Al-CuO Nanocomposite Powders for Energetic Formulations. Combustion Science and Technology, 2008, 181, 97-116.	1.2	84
60	SIMULTANEOUSLY CATALYTIC REMOVAL OF NO _x AND SOOT ON RARE EARTH ELEMENT OXIDE LOADED WITH POTASSIUM AND TRANSITION NANOSIZED METAL OXIDES. Nano, 2008, 03, 239-244.	0.5	0
61	Improving Fire Suppression of Water Mist by Chemical Additives. Polymer-Plastics Technology and Engineering, 2007, 46, 51-60.	1.9	5
62	Review on Additives for New Clean Fire Suppressants. Environmental Engineering Science, 2007, 24, 663-674.	0.8	16
63	Simultaneous catalytic removal of NO and soot particulate over Co–Al mixed oxide catalysts derived from hydrotalcites. Catalysis Communications, 2007, 8, 1659-1664.	1.6	57
64	Studies on the Thermal Behavior of Polyurethanes. Polymer-Plastics Technology and Engineering, 2006, 45, 95-108.	1.9	80
65	Research on the Combustion Properties of Propellants with Low Content of Nano Metal Powders. Propellants, Explosives, Pyrotechnics, 2006, 31, 139-147.	1.0	67
66	Catalytic oxidation of diesel soot on mixed oxides derived from hydrotalcites. Catalysis Letters, 2006, 112, 149-154.	1.4	23
67	Thermal behavior of ammonium perchlorate and metal powders of different grades. Journal of Thermal Analysis and Calorimetry, 2006, 85, 315-320.	2.0	40
68	Laser Ignition and Combustion Properties of Composite Propellant Containing Nanometal Powders. AIAA Journal, 2006, 44, 1463-1467.	1.5	3
69	Preliminary study on the suppression chemistry of water mists on poly(methyl methacrylate) flames. Polymer Degradation and Stability, 2004, 86, 293-300.	2.7	14