J Marcos Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7643103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis and Design of the Integrated Double Buck–Boost Converter as a High-Power-Factor Driver for Power-LED Lamps. IEEE Transactions on Industrial Electronics, 2012, 59, 1689-1697.	5.2	240
2	A Review of LED Drivers and Related Technologies. IEEE Transactions on Industrial Electronics, 2017, 64, 5754-5765.	5.2	197
3	A Universal-Input Single-Stag2e High-Power-Factor Power Supply for HB-LEDs Based on Integrated Buck–Flyback Converter. IEEE Transactions on Industrial Electronics, 2011, 58, 589-599.	5.2	185
4	PWM Series Dimming for Slow-Dynamics HPF LED Drivers: the High-Frequency Approach. IEEE Transactions on Industrial Electronics, 2012, 59, 1717-1727.	5.2	120
5	Solid-State Lighting: A System Review. IEEE Industrial Electronics Magazine, 2013, 7, 6-14.	2.3	119
6	Matching LED and Driver Life Spans: A Review of Different Techniques. IEEE Industrial Electronics Magazine, 2015, 9, 36-47.	2.3	119
7	Integrated Buck-Flyback Converter as a High-Power-Factor Off-Line Power Supply. IEEE Transactions on Industrial Electronics, 2008, 55, 1090-1100.	5.2	104
8	Solid-State Lighting: A Concise Review of the State of the Art on LED and OLED Modeling. IEEE Industrial Electronics Magazine, 2015, 9, 6-16.	2.3	95
9	Dimming of High-Brightness LEDs by Means of Luminous Flux Thermal Estimation. IEEE Transactions on Power Electronics, 2009, 24, 1107-1114.	5.4	92
10	Analysis, Design, and Experimentation on Constant-Frequency DC-DC Resonant Converters With Magnetic Control. IEEE Transactions on Power Electronics, 2012, 27, 1369-1382.	5.4	88
11	A Single-Stage High-Power-Factor Electronic Ballast Based on Integrated Buck Flyback Converter to Supply Metal Halide Lamps. IEEE Transactions on Industrial Electronics, 2008, 55, 1112-1122.	5.2	85
12	A Universal-Input Single-Stage High-Power-Factor Power Supply for HB-LEDs Based on Integrated Buck-Flyback Converter. , 2009, , .		85
13	Investigation of a New Control Strategy for Electronic Ballasts Based on Variable Inductor. IEEE Transactions on Industrial Electronics, 2008, 55, 3-10.	5.2	84
14	A Dual Half-Bridge <i>LLC</i> Resonant Converter With Magnetic Control for Battery Charger Application. IEEE Transactions on Power Electronics, 2020, 35, 2196-2207.	5.4	84
15	Capacitance Reduction With An Optimized Converter Connection Applied to LED Drivers. IEEE Transactions on Industrial Electronics, 2015, 62, 184-192.	5.2	81
16	Analysis, Design, and Experimentation of a High-Voltage Power Supply for Ozone Generation Based on Current-Fed Parallel-Resonant Push–Pull Inverter. IEEE Transactions on Industry Applications, 2005, 41, 1364-1372.	3.3	79
17	Offline Soft-Switched LED Driver Based on an Integrated Bridgeless Boost–Asymmetrical Half-Bridge Converter. IEEE Transactions on Industry Applications, 2015, 51, 761-769.	3.3	78
18	Analysis and Design of the <i>LLC</i> Resonant Converter With Variable Inductor Control Based on Time-Domain Analysis. IEEE Transactions on Industrial Electronics, 2020, 67, 5432-5443.	5.2	71

#	Article	IF	CITATIONS
19	Static and Dynamic Photoelectrothermal Modeling of LED Lamps Including Low-Frequency Current Ripple Effects. IEEE Transactions on Power Electronics, 2015, 30, 3841-3851.	5.4	65
20	A Review on Variable Inductors and Variable Transformers: Applications to Lighting Drivers. IEEE Transactions on Industry Applications, 2016, 52, 531-547.	3.3	65
21	Evaluation of a Low-Cost Permanent Emergency Lighting System Based on High-Efficiency LEDs. IEEE Transactions on Industry Applications, 2005, 41, 1386-1390.	3.3	63
22	Review of High-Frequency High-Voltage-Conversion-Ratio DC–DC Converters. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 2, 374-389.	3.0	61
23	Large-Signal Characterization of Power Inductors in EV Bidirectional DC–DC Converters Focused on Core Size Optimization. IEEE Transactions on Industrial Electronics, 2015, 62, 3042-3051.	5.2	59
24	High-Voltage Power Supply for Ozone Generation Based on Piezoelectric Transformer. IEEE Transactions on Industry Applications, 2009, 45, 1513-1523.	3.3	55
25	Low-Power High-Voltage High-Frequency Power Supply for Ozone Generation. IEEE Transactions on Industry Applications, 2004, 40, 414-421.	3.3	53
26	Analysis and Experiments on a Single-Inductor Half-Bridge LED Driver With Magnetic Control. IEEE Transactions on Power Electronics, 2017, 32, 9179-9190.	5.4	52
27	Comparative Analysis and Experiments of Resonant Tanks for Magnetically Controlled Electronic Ballasts. IEEE Transactions on Industrial Electronics, 2008, 55, 3201-3211.	5.2	50
28	A Magnetically Controlled Single-Stage AC–DC Converter. IEEE Transactions on Power Electronics, 2020, 35, 8872-8877.	5.4	49
29	Analysis, design, and optimization of the LCC resonant inverter as a high-intensity discharge lamp ballast. IEEE Transactions on Power Electronics, 1998, 13, 573-585.	5.4	47
30	Effects of the Junction Temperature on the Dynamic Resistance of White LEDs. IEEE Transactions on Industry Applications, 2013, 49, 750-760.	3.3	45
31	A Systematic Approach to Modeling Complex Magnetic Devices Using SPICE: Application to Variable Inductors. IEEE Transactions on Power Electronics, 2016, 31, 7735-7746.	5.4	45
32	Integrated Zeta–Flyback Electronic Ballast to Supply High-Intensity Discharge Lamps. IEEE Transactions on Industrial Electronics, 2007, 54, 2918-2921.	5.2	44
33	Analysis, Design, and Experimentation of a Dimmable Resonant-Switched-Capacitor LED Driver With Variable Inductor Control. IEEE Transactions on Power Electronics, 2017, 32, 3051-3062.	5.4	44
34	Using Magnetic Regulators for the Optimization of Universal Ballasts. IEEE Transactions on Power Electronics, 2008, 23, 3126-3134.	5.4	43
35	Analysis and Design of a Novel Single-Stage High-Power-Factor Electronic Ballast Based on Integrated Buck Half-Bridge Resonant Inverter. IEEE Transactions on Power Electronics, 2004, 19, 550-559.	5.4	41
36	Analysis and experimental results of a single-stage high-power-factor electronic ballast based on flyback converter. IEEE Transactions on Power Electronics, 1999, 14, 998-1006.	5.4	40

#	Article	IF	CITATIONS
37	Acoustic Resonance Characterization of Low-Wattage Metal-Halide Lamps Under Low-Frequency Square-Waveform Operation. IEEE Transactions on Power Electronics, 2007, 22, 735-743.	5.4	40
38	Capacitance Minimization in Offline LED Drivers Using an Active-Ripple-Compensation Technique. IEEE Transactions on Power Electronics, 2017, 32, 3022-3033.	5.4	38
39	LED Driver Based on Input Current Shaper Without Electrolytic Capacitor. IEEE Transactions on Industrial Electronics, 2017, 64, 4520-4529.	5.2	38
40	Evaluation of High-Frequency Sinusoidal Waveform Superposed With Third Harmonic for Stable Operation of Metal Halide Lamps. IEEE Transactions on Industry Applications, 2005, 41, 721-727.	3.3	37
41	A Study on LED Retrofit Solutions for Low-Voltage Halogen Cycle Lamps. IEEE Transactions on Industry Applications, 2012, 48, 1673-1682.	3.3	37
42	SPICE Modeling of Variable Inductors and Its Application to Single Inductor LED Driver Design. IEEE Transactions on Industrial Electronics, 2017, 64, 5894-5903.	5.2	35
43	Analysis and Design of a Single-Stage High-Power-Factor Dimmable Electronic Ballast for Electrodeless Fluorescent Lamp. IEEE Transactions on Industrial Electronics, 2013, 60, 3081-3091.	5.2	34
44	High frequency PWM dimming technique for high power factor converters in LED lighting. , 2010, , .		33
45	A New Technique to Equalize Branch Currents in Multiarray LED Lamps Based on Variable Inductors. IEEE Transactions on Industry Applications, 2016, 52, 521-530.	3.3	33
46	Small-Signal Modeling of Discharge Lamps Through Step Response and Its Application to Low-Frequency Square-Waveform Electronic Ballasts. IEEE Transactions on Power Electronics, 2007, 22, 744-752.	5.4	31
47	A Novel Control Method for Piezoelectric-Transformer Based Power Supplies Assuring Zero-Voltage-Switching Operation. IEEE Transactions on Industrial Electronics, 2008, 55, 1085-1089.	5.2	31
48	New control strategy in a square-wave inverter for low wattage metal halide lamp supply to avoid acoustic resonances. IEEE Transactions on Power Electronics, 2006, 21, 243-253.	5.4	29
49	Acoustic-Resonance Characterization of Low-Wattage Metal–Halide Lamps. IEEE Transactions on Plasma Science, 2007, 35, 43-58.	0.6	29
50	A long-life high-power-factor HPS-lamp LED retrofit converter based on the integrated buck-boost buck topology. , 2011, , .		29
51	Analysis and design of the integrated double buck-boost converter operating in full DCM for LED lighting applications. , 2011, , .		28
52	Magnetic dimming of electronic ballasts. Electronics Letters, 2005, 41, 718.	0.5	26
53	Application of series resonant converters to reduce ripple transmission to LED arrays in offline drivers. Electronics Letters, 2013, 49, 414-415.	0.5	26
54	Low-cost single-stage electronic ballast based on a self-oscillating resonant inverter integrated with a buck-boost PFC circuit. IEEE Transactions on Industrial Electronics, 2001, 48, 1196-1204.	5.2	25

#	Article	IF	CITATIONS
55	Analysis and design of a high power factor, single-stage electronic ballast for high-intensity discharge lamps. IEEE Transactions on Power Electronics, 2003, 18, 558-569.	5.4	24
56	Analysis and design of the quadratic buck-boost converter as a high-power-factor driver for power-LED lamps. , 2010, , .		24
57	Optimizing Universal Ballasts Using Magnetic Regulators and Digital Control. IEEE Transactions on Industrial Electronics, 2011, 58, 2860-2871.	5.2	23
58	Analysis and Experimentation on a New High Power Factor Off-Line LED Driver Based on Interleaved Integrated Buck Flyback Converter. IEEE Transactions on Industry Applications, 2019, 55, 4359-4369.	3.3	23
59	Magnetic control of DC-DC resonant converters provides constant frequency operation. Electronics Letters, 2010, 46, 440.	0.5	22
60	A Novel Double Integrated Buck Offline Power Supply for Solid-State Lighting Applications. IEEE Transactions on Industry Applications, 2015, 51, 1268-1276.	3.3	22
61	Constant-Frequency Magnetically Controlled Universal Ballast With SoS Compliance for TL5 Fluorescent Lamps. IEEE Transactions on Power Electronics, 2012, 27, 2163-2175.	5.4	21
62	Investigation of the Active Ripple Compensation Technique to Reduce Bulk Capacitance in Offline Flyback-Based LED Drivers. IEEE Transactions on Power Electronics, 2018, 33, 5206-5214.	5.4	21
63	Minimization of Acoustic Resonances in HID Lamps: Analysis and Comparison of Power Harmonics Content in High Frequency Non-Resonant Inverters. IEEE Transactions on Power Electronics, 2005, 20, 1467-1479.	5.4	20
64	Complete Low-Cost Two-Stage Electronic Ballast for 70-W High-Pressure Sodium Vapor Lamp Based on Current-Mode-Controlled Buck–Boost Inverter. IEEE Transactions on Industry Applications, 2005, 41, 728-734.	3.3	20
65	Interleaved Buck Converter Applied to High-Power HID Lamps Supply: Design, Modeling and Control. IEEE Transactions on Industry Applications, 2013, 49, 1844-1853.	3.3	20
66	A Double-T-Type Compensation Network and Its Tuning Method for IPT System. IEEE Transactions on Industry Applications, 2017, 53, 4757-4767.	3.3	20
67	Loss Analysis for Efficiency Improvement of the Integrated Buck–Flyback LED Driver. IEEE Transactions on Industry Applications, 2018, 54, 6543-6553.	3.3	20
68	Two Flyback-Based Integrated Converters for the Implementation of LFSW Electronic Ballasts. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	19
69	A Straightforward Methodology to Modeling High Power Factor AC–DC Converters. IEEE Transactions on Power Electronics, 2013, 28, 4723-4731.	5.4	19
70	Optimization of a Front-End DCM Buck PFP for an HPF Integrated Single-Stage LED Driver. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 666-678.	3.7	19
71	A Single-Stage LED Driver With High-Performance Primary-Side-Regulated Characteristic. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 76-80.	2.2	19
72	LED lighting systems for smart buildings: a review. IET Smart Cities, 2020, 2, 126-134.	1.6	19

#	Article	IF	CITATIONS
73	Development of a high-voltage closed-loop power supply for ozone generation. , 2008, , .		18
74	A Comparative Performance Investigation of Single-Stage Dimmable Electronic Ballasts for Electrodeless Fluorescent Lamp Applications. IEEE Transactions on Power Electronics, 2015, 30, 2239-2252.	5.4	18
75	Fuzzy Logic Control With an Improved Algorithm for Integrated LED Drivers. IEEE Transactions on Industrial Electronics, 2018, 65, 6994-7003.	5.2	18
76	Electronic ballast based on single-stage high-power-factor topologies: a comparative study. , 0, , .		17
77	Design and experimental results of an input-current-shaper based electronic ballast. IEEE Transactions on Power Electronics, 2003, 18, 547-557.	5.4	17
78	Single-stage SEPIC-Buck converter for LED lighting with reduced storage capacitor. , 2012, , .		17
79	Analysis and experimentation of the quadâ€U variable inductor for power electronics applications. IET Power Electronics, 2018, 11, 2330-2337.	1.5	17
80	Fully Integrated Buck and Boost Converter as a High Efficiency, High-Power-Density Off-Line LED Driver. IEEE Transactions on Power Electronics, 2020, 35, 12238-12251.	5.4	17
81	A Novel High-Power-Factor Electrolytic-Capacitorless LED Driver Based on Ripple Port. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 6248-6258.	3.7	17
82	A bidirectional buck-boost converter to supply LEDs from batteries during Peak Load Time. , 2011, , .		16
83	Highâ€powerâ€factor lightâ€emitting diode lamp power supply without electrolytic capacitors for highâ€pressureâ€sodium lamp retrofit applications. IET Power Electronics, 2013, 6, 1502-1515.	1.5	16
84	A Dimmable Offline LED Driver With OOK-M-FSK Modulation for VLC Applications. IEEE Transactions on Industrial Electronics, 2019, 66, 5220-5230.	5.2	16
85	Analysis and Design of a Simultaneous Wireless Power and Data Transfer System Featuring High Data Rate and Signal-to-Noise Ratio. IEEE Transactions on Industrial Electronics, 2021, 68, 10761-10771.	5.2	16
86	High-Efficient Electrolytic-Capacitor-less Off-Line LED Driver with Reduced Power Processing. IEEE Transactions on Power Electronics, 2021, , 1-1.	5.4	16
87	Magnetically Controlled Electronic Ballasts With Isolated Output: The Variable Transformer Solution. IEEE Transactions on Industrial Electronics, 2011, 58, 4117-4129.	5.2	15
88	Microcontroller-Based High-Power-Factor Electronic Ballast to Supply Metal Halide Lamps. IEEE Transactions on Industrial Electronics, 2012, 59, 1779-1788.	5.2	15
89	Analysis and design of a novel variable-inductor-based LED driver for DC lighting grids. , 2016, , .		15
90	Analysis and Design of a Unidirectional Resonant Switched-Capacitor Step-Up Converter for OLED Lamp Driving Based on Variable Inductor. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 1106-1115.	3.7	15

#	Article	IF	CITATIONS
91	A Review of Visible Light Communication LED Drivers. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 919-933.	3.7	15
92	Small-Signal Analysis of a Low-Cost Power Control for LCC Series-Parallel Inverters With Resonant Current Mode Control for HID Lamps. IEEE Transactions on Power Electronics, 2005, 20, 1205-1212.	5.4	14
93	Arc Dynamic Stabilization in Low-Frequency Square-Wave Electronic Ballast for Metal Halide Lamps. IEEE Transactions on Power Electronics, 2007, 22, 1592-1599.	5.4	14
94	Modified zeroâ€voltageâ€switching singleâ€stage LED driver based on Class E converter with constant frequency control method. IET Power Electronics, 2018, 11, 2010-2018.	1.5	14
95	On Energy Efficiency of Visible Light Communication Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 6396-6407.	3.7	14
96	Comparative Analysis and Experiments of Resonant Tanks for Magnetically-Controlled Electronic Ballasts. , 2007, , .		13
97	High-power-factor street lighting system to supply LEDs without energy consumption during the peak load time. , 2011, , .		13
98	A new active Hybrid-Series-Parallel PWM dimming scheme for off-line integrated LED drivers with high efficiency and fast dynamics. , 2016, , .		13
99	A Review on Energy Management Methodologies for LED Lighting Systems in Smart Buildings. , 2020, , .		13
100	Optimization of universal ballasts through magnetic regulators. IEEE Applied Power Electronics Conference and Exposition, 2008, , .	0.0	12
101	A new technique to equalize branch currents in multiarray LED lamps based on variable inductor. , 2014, , .		12
102	Modeling and Characterization of Organic Light-Emitting Diodes Including Capacitance Effect. IEEE Transactions on Electron Devices, 2015, 62, 3314-3321.	1.6	12
103	Low cost electronic ballast for a 36-W fluorescent lamp based on a current-mode-controlled boost inverter for a 120-V DC bus power distribution. IEEE Transactions on Power Electronics, 2006, 21, 1099-1106.	5.4	11
104	Analysis, Design, and Experimentation of a Closed-Loop Metal Halide Lamp Electronic Ballast. IEEE Transactions on Industry Applications, 2012, 48, 28-36.	3.3	11
105	Loss analysis for efficiency improvement of the integrated buck-flyback converter for LED driving applications. , 2017, , .		11
106	Design and implementation of an electronic ballast for UV-based ozone generation using a low cost microcontroller. , 0, , .		10
107	Acoustic resonance characterization of lowwattage metal-halide lamps under low-frequency square-waveform operation. , 0, , .		10
108	Design Optimization of the LCC Parallel-Series Inverter With Resonant Current Mode Control for 250-W HPS Lamp Ballast. IEEE Transactions on Power Electronics, 2005, 20, 1197-1204.	5.4	10

#	Article	IF	CITATIONS
109	HID Lamps Fed With Square Waveforms: Dimming and Frequency Effects on Stability, Current Crest Factor, and Power Factor. IEEE Transactions on Industry Applications, 2010, 46, 1667-1673.	3.3	10
110	Electric Equivalent Model for Induction Electrodeless Fluorescent Lamps. IEEE Transactions on Power Electronics, 2013, 28, 3603-3613.	5.4	10
111	A review on variable inductors and variable transformers: Applications to lighting drivers. , 2014, , .		10
112	Comparative Analysis of Self-Oscillating Electronic Ballast Dimming Methods With Power Factor Correction for Fluorescent Lamps. IEEE Transactions on Industry Applications, 2015, 51, 770-782.	3.3	10
113	Analysis and behavioural modelling of matching networks for resonantâ€operating capacitive wireless power transfer. IET Power Electronics, 2019, 12, 2615-2625.	1.5	10
114	A variable inductor MATLAB/Simulink behavioral model for application in magnetically-controlled electronic ballasts. , 2008, , .		9
115	Small signal characterization of fluorescent lamps in dimmed operation. , 2009, , .		9
116	Electronic Ballasts for HID Lamps. IEEE Industry Applications Magazine, 2011, 17, 54-59.	0.3	9
117	LED driver with bidirectional series converter for low frequency ripple cancelation. , 2012, , .		9
118	Study on Passive Self-Equalization of Parallel-Connected LED Strings. IEEE Transactions on Industry Applications, 2015, 51, 2536-2543.	3.3	9
119	Analysis, design, and experimentation of the active hybridâ€seriesâ€parallel PWM dimming scheme for highâ€efficient offâ€line LED drivers. IET Power Electronics, 2019, 12, 1697-1705.	1.5	9
120	Analysis of the class E amplifier used as electronic ballast with dimming capability for photovoltaic applications. International Journal of Electronics, 2001, 88, 831-846.	0.9	8
121	Magnetic regulator topologies for dimmable electronic ballasts. , 2010, , .		8
122	Achieving constant frequency operation in DC-DC resonant converters through magnetic control. , 2010, , .		8
123	Use of current controlled mutual inductor to limit recycling current in the AHB-Flyback converter. , 2012, , .		8
124	Analysis of lowâ€frequency current ripple transmission in seriesâ€resonant LED drivers. Electronics Letters, 2015, 51, 716-717.	0.5	8
125	Generalized Analysis and Comparison of High-Power-Factor Integrated Topologies to Supply Metal Halide Lamps with Low Frequency Square Waveform. Conference Record - IAS Annual Meeting (IEEE) Tj ETQq1 1 	0.084314	rgBT /Overla
126	Interleaved buck converter applied to high power HID lamps supplying: Design, modeling and control. ,		7

126 2011, , .

#	Article	IF	CITATIONS
127	Optimized cascade structure applied to LED street lighting. , 2012, , .		7
128	Modified Flyback for HID Lamp Supply: Design, Modeling, and Control. IEEE Transactions on Industry Applications, 2013, 49, 739-749.	3.3	7
129	Preemphasis Control in Switched-Mode Power Converter for Energy-Efficient Wide Bandwidth Visible Light Communication. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 146-155.	3.7	7
130	Using Magnetic Control of DC-DC Converters in LED Driver Applications. IEEE Latin America Transactions, 2021, 19, 297-305.	1.2	7
131	Electronic ballast for metal halide lamps based on a class E resonant inverter operating at 1 MHz. , 0, , \cdot		6
132	Integration Methodology of DC/DC Converters to Supply HPS Lamps: An Experimental Approach. , 2008, , .		6
133	Comparison of single stage SEPIC and integrated SEPIC-Buck converter as off-line LED drivers. , 2013, , .		6
134	Scaleâ€photoâ€electroâ€thermal model for organic lightâ€emitting diodes. IET Optoelectronics, 2016, 10, 100-110.	1.8	6
135	High-Performance LED Drivers. IEEE Transactions on Industrial Electronics, 2017, 64, 5751-5753.	5.2	6
136	A Simple Resonant Switched-Capacitor LED Driver Employed as a Fast Pulse-Based Transmitter for VLC Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 111-122.	3.7	6
137	Electrolytic-Capacitor-less Off-Line LED Driver based on Integrated Parallel Buck-Boost and Boost Converter. , 2020, , .		6
138	Design and Implementation of a Microcontroller-Based High Power Factor Electronic Ballast to Supply Metal Halide Lamps. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	5
139	Experimental Results of a Cost-Effective Ozone Generator for Water Treatment in Colombia. Ozone: Science and Engineering, 2008, 30, 202-209.	1.4	5
140	Using a power-dependent small-signal model for stability analysis in resonant dimming ballasts for fluorescent lamps. , 2011, , .		5
141	Small-signal modeling and control of an integrated bridgeless boost — Half-bridge converter for LED driving. , 2013, , .		5
142	Analysis of series-resonant LED driver applied to reduce the low-frequency current ripple transmission. , 2015, , .		5
143	Analysis and experimentation on a new high power factor off-line LED driver based on interleaved integrated buck flyback converter. , 2018, , .		5
144	High-Efficient High-Power-Factor Off-Line LED Driver based on Integrated Buck and Boost Converter. , 2019, , .		5

#	Article	IF	CITATIONS
145	A Soft-Switching Transformer-Less Step-Down Converter Based on Resonant Current Balance Module. IEEE Transactions on Power Electronics, 2021, 36, 8206-8218.	5.4	5
146	Capacitance Reduction in Flicker-Free Integrated Offline LED Drivers. IEEE Transactions on Industrial Electronics, 2021, 68, 11992-12001.	5.2	5
147	Long-lifetime SEPIC-buck integrated converter for LED lighting application. , 2012, , .		4
148	Off-line single-stage SEPIC-Buck converter for dimmable LED lighting with reduced storage capacitor. , 2013, , .		4
149	Experimental large-signal characterization of power inductors in bidirectional electric vehicle DC-DC converters for simulation analysis. , 2013, , .		4
150	Four-parameter Taylor series based light-emitting-diode model. , 2014, , .		4
151	SPICE-aided design of a variable inductor in LED driver applications. , 2016, , .		4
152	Analysis of Low Frequency Ripple Transmission in LED Drivers. , 2018, , .		4
153	A Hardware Emulator for OLED Panels Applied to Lighting Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 1252-1258.	3.7	4
154	Development of an IoT-Based Electrical Consumption Measurement and Analysis System for Smart Homes and Buildings. , 2021, , .		4
155	Frequency-Based Active Ripple Compensation Technique to Reduce Bulk Capacitance in Integrated Offline LED Drivers. IEEE Transactions on Power Electronics, 2022, 37, 12209-12220.	5.4	4
156	Continuously Adjustable Modular Bidirectional Switched-Capacitor DC–DC Converter. IEEE Transactions on Power Electronics, 2022, 37, 12944-12948.	5.4	4
157	Electronic Ballasts. , 2007, , 565-591.		3
158	The controllable non-linear reactor in electronic ballasts applications: A behavioral analysis of the inductance as a function of both ac and dc bias currents. , 2008, , .		3
159	A digitally-controlled universal ballast based on magnetic regulator and PSoC device. , 2009, , .		3
160	Automatic lamp detection technique for self-oscillating fluorescent lamp electronic ballasts. , 2012, ,		3
161	Modelling and control of an optimized cascade structure for LED street lighting fixtures. , 2012, , .		3
162	Dimmable single-stage SEPIC-Ćuk converter for LED lighting with reduced storage capacitor. , 2014, , .		3

	MARCOS ALONSO
J	

#	Article	IF	CITATIONS
163	Optimized Design of a Wide-Bandwidth Controller for Low-Frequency Ripple Compensation in Offline LED Drivers. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 1166-1178.	3.7	3
164	A Review on Smart LED Lighting Systems. , 2020, , .		3
165	Efficient Hybrid Buck Converter for Visible Light Communication in LED Drivers. IEEE Transactions on Industrial Electronics, 2022, 69, 1877-1887.	5.2	3
166	Analysis and Design of the Integrated Zeta - Flyback Converter as a High-Power-Factor Electronic Ballast for HID Lamps. , 2007, , .		2
167	Analysis and design of a high-power-factor single-stage buck-boost half-bridge electronic ballast for electrodeless fluorescent lamps. , 2011, , .		2
168	A study on LED retrofit solutions for low-voltage halogen cycle lamps. , 2011, , .		2
169	Safe electrode operation in universal electronic ballasts. , 2011, , .		2
170	Correction to "Magnetically Controlled Electronic Ballasts With Isolated Output: The Variable Transformer Solution―[Sep 11 4117-4129]. IEEE Transactions on Industrial Electronics, 2012, 59, 3042-3042.	5.2	2
171	A novel double integrated buck offline power supply for solid state lighting applications. , 2013, , .		2
172	Voltage-frequency control dimming method for T5 fluorescent lamps. , 2013, , .		2
173	Iterative method for analysis of dimmable self-oscillating electronic ballast under bus voltage control. , 2013, , .		2
174	Experimental evaluation of current waveform on OLED photometric performance. , 2016, , .		2
175	Hybrid series-parallel PWM dimming technique for integrated-converter-based HPF LED drivers. , 2016, ,		2
176	Aging Model for Life Prediction and Simulation of Organic Light-Emitting Diodes (OLEDs). , 2019, , .		2
177	Simplified Photo-Electro-Thermal Model Applied to Resonant-Switched-Capacitor-Based OLED Drivers. , 2019, , .		2
178	Accurate Fundamental Harmonic Modeling of Inductive Power Transfer Battery Chargers. IEEE Transactions on Transportation Electrification, 2022, 8, 627-635.	5.3	2
179	A Novel Design Approach for LLC Resonant Converters in Off-line LED Driving Applications. Journal of Control, Automation and Electrical Systems, 2021, 32, 1758-1770.	1.2	2
180	Electrothermal Model for Power LEDs Based on the Equivalent Resistance Concept for LED Driver Design. IEEE Transactions on Electron Devices, 2021, 68, 6249-6254.	1.6	2

0

#	Article	IF	CITATIONS
181	Foreword Special Issue on Lighting Applications. IEEE Transactions on Power Electronics, 2007, 22, 717-718.	5.4	1
182	Magnetically-controlled electronic ballasts with isolated output: The variable transformer solution. , 2009, , .		1
183	Electronic Ballasts. , 2011, , 573-599.		1
184	Comparison of integrated SEPIC-Buck and SEPIC-Ćuk converters as off-line dimmable LED drivers with reduced storage capacitor. , 2014, , .		1
185	Corrections to "LED Driver Based on Input Current Shaper Without Electrolytic Capacitor" [Jun 17 4520-4529]. IEEE Transactions on Industrial Electronics, 2018, 65, 2838-2838.	5.2	1
186	Review on DC-DC SIMO Converters with Parallel Configuration for LED Lighting Control. , 2020, , .		1
187	Projeto e implementação de um reator eletrônico microcontrolado, de elevado fator de potência, orientado a lâmpadas de vapor metálico. Controle and Automacao, 2009, 20, 405-416.	0.2	1
188	Magnetic Control of DC-DC Converters for LED Drivers Applications. Communications in Computer and Information Science, 2020, , 305-318.	0.4	1
189	Generalized Analysis of Non-Isolated Integrated LED Drivers. , 2020, , .		1
190	Arc Stabilization in Metal Halide Lamps using a Post-Regulator Working at the Zero-Duty-Cycle Boundary. , 2007, , .		0
191	Analysis and design of model based on step response for the stability in lamps HID. , 2008, , .		0
192	High-Voltage Closed-Loop Power Supply for Ozone Generators. EPE Journal (European Power) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 302
193	A new integrated variable transformer topology for electronic ballasts. , 2009, , .		0
194	Step-dimming for multi-Watt electronic ballast with magnetic control: SoS limits analysis. , 2012, , .		0
195	Comparison between integrated and non-integrated SEPIC half-bridge electronic ballasts for electrodeless fluorescent lamp applications. , 2013, , .		0
196	Low-frequency burst modulation applied to single-stage SEPIC half-bridge topology to feed an electrodeless fluorescent lamp with dimming capability. , 2014, , .		0
197	A review on low-pressure discharge lamp modelling. , 2014, , .		0

DCM Integrated Double Buck-Boost led driver with reduced storage capacitance. , 2015, , .

12

0

# ARTICLE		IF	CITATIONS
Analysis, design applications. IET	nd evaluation of a zeroâ€voltageâ€switching nonâ€resonant converter for IPT Power Electronics, 2019, 12, 2599-2607.	1.5	0

200 An Analysis of Visible Light Communication Energy Cost. , 2020, , .