Manish Pandey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7642715/publications.pdf Version: 2024-02-01

		393982	433756
32	988	19	31
papers	citations	h-index	g-index
32	32	32	1337
all docs	docs citations	times ranked	citing authors

MANICH DANDEV

#	Article	IF	CITATIONS
1	Recent progress in the macroscopic orientation of semiconducting polymers by floating film transfer method. Japanese Journal of Applied Physics, 2022, 61, SB0801.	0.8	11
2	Perfectness of the main-chain alignment in the conjugated polymer films prepared by the floating film transfer method. Applied Physics Letters, 2022, 120, .	1.5	8
3	Extreme Orientational Uniformity in Large-Area Floating Films of Semiconducting Polymers for Their Application in Flexible Electronics. ACS Applied Materials & Interfaces, 2021, 13, 38534-38543.	4.0	18
4	Assisted alignment of conjugated polymers in floating film transfer method using polymer blend. Thin Solid Films, 2021, 734, 138814.	0.8	6
5	Gas phase doping of pre-fabricated CNT yarns for enhanced thermoelectric properties. Synthetic Metals, 2021, 280, 116874.	2.1	6
6	2D positional mapping of casting condition driven microstructural distribution in organic thin films. Japanese Journal of Applied Physics, 2020, 59, SCCA06.	0.8	2
7	Solvent-Assisted Friction Transfer Method for Fabricating Large-Area Thin Films of Semiconducting Polymers with Edge-On Oriented Extended Backbones. ACS Applied Materials & Interfaces, 2020, 12, 55033-55043.	4.0	5
8	Fabrication of ribbon-like films of orientation-controlled carbon nanotube/polymer composite using a robotic dispenser. Applied Physics Express, 2020, 13, 065503.	1.1	3
9	Investigation and Control of Charge Transport Anisotropy in Highly Oriented Friction-Transferred Polythiophene Thin Films. ACS Applied Materials & Interfaces, 2020, 12, 11876-11883.	4.0	25
10	Structured crystallization for efficient all-inorganic perovskite solar cells with high phase stability. Journal of Materials Chemistry A, 2019, 7, 20390-20397.	5.2	25
11	Strain Relaxation and Light Management in Tin–Lead Perovskite Solar Cells to Achieve High Efficiencies. ACS Energy Letters, 2019, 4, 1991-1998.	8.8	114
12	Role of device architecture and AlOX interlayer in organic Schottky diodes and their interpretation by analytical modeling. Journal of Applied Physics, 2019, 126, .	1.1	11
13	Recent advances in the orientation of conjugated polymers for organic field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 13323-13351.	2.7	111
14	Dependence of ITO oated Flexible Substrates in the Performance and Bending Durability of Perovskite Solar Cells. Advanced Engineering Materials, 2019, 21, 1900288.	1.6	32
15	Efficient, hysteresis free, inverted planar flexible perovskite solar cells <i>via</i> perovskite engineering and stability in cylindrical encapsulation. Sustainable Energy and Fuels, 2019, 3, 1739-1748.	2.5	27
16	2D positional profiling of orientation and thickness uniformity in the semiconducting polymers thin films. Organic Electronics, 2019, 68, 221-229.	1.4	7
17	Passivation of Grain Boundary by Squaraine Zwitterions for Defect Passivation and Efficient Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 10012-10020.	4.0	70
18	Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance. Nano Energy, 2019, 59, 258-267.	8.2	61

MANISH PANDEY

#	Article	IF	CITATIONS
19	Implications of doping and depletion on the switching characteristics in polymer-based organic field-effect transistors. Organic Electronics, 2018, 56, 152-158.	1.4	2
20	Rapid Formation and Macroscopic Selfâ€Assembly of Liquidâ€Crystalline, Highâ€Mobility, Semiconducting Thienothiophene. Advanced Materials Interfaces, 2018, 5, 1700875.	1.9	41
21	Anisotropic charge transport in highly oriented films of semiconducting polymer prepared by ribbon-shaped floating film. Applied Physics Letters, 2018, 112, .	1.5	40
22	Synthesis and Optoelectrical Characterization of Novel Squaraine Dyes Derived from Benzothiophene and Benzofuran. ACS Omega, 2018, 3, 13919-13927.	1.6	5
23	Interfacial Sulfur Functionalization Anchoring SnO ₂ and CH ₃ NH ₃ PbI ₃ for Enhanced Stability and Trap Passivation in Perovskite Solar Cells. ChemSusChem, 2018, 11, 3941-3948.	3.6	58
24	Solvent driven performance in thin floating-films of PBTTT for organic field effect transistor: Role of macroscopic orientation. Organic Electronics, 2017, 43, 240-246.	1.4	56
25	Air-stable vapor phase sensing of ammonia in sub-threshold regime of poly(2,5-bis(3-tetradecylthiophen-2yl)thieno(3,2-b)thiophene) based polymer thin-film transistor. Sensors and Actuators B: Chemical, 2017, 246, 243-251.	4.0	46
26	Interplay of Orientation and Blending: Synergistic Enhancement of Field Effect Mobility in Thiophene-Based Conjugated Polymers. Journal of Physical Chemistry C, 2017, 121, 11184-11193.	1.5	24
27	Layer-by-layer coating of oriented conjugated polymer films towards anisotropic electronics. Synthetic Metals, 2017, 227, 29-36.	2.1	30
28	Controlling Factors for Orientation of Conjugated Polymer Films in Dynamic Floating-Film Transfer Method. Journal of Nanoscience and Nanotechnology, 2017, 17, 1915-1922.	0.9	34
29	Casting Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM. Journal of Physics: Conference Series, 2017, 924, 012014.	0.3	7
30	Orientation Characteristics of Non-regiocontrolled Poly (3-hexyl-thiophene) Film by FTM on Various Liquid Substrates. Journal of Physics: Conference Series, 2016, 704, 012005.	0.3	20
31	Enhancement of carrier mobility along with anisotropic transport in non-regiocontrolled poly (3-hexylthiophene) films processed by floating film transfer method. Organic Electronics, 2016, 38, 115-120.	1.4	48
32	Influence of backbone structure on orientation of conjugated polymers in the dynamic casting of thin floating-films. Thin Solid Films, 2016, 619, 125-130.	0.8	35