
Daniel R Hummer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/764269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultralow viscosity of carbonate melts at high pressures. Nature Communications, 2014, 5, 5091.	5.8	124
2	Thermal expansion of anatase and rutile between 300 and 575 K using synchrotron powder X-ray diffraction. Powder Diffraction, 2007, 22, 352-357.	0.4	102
3	Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature, 2019, 568, 487-492.	13.7	97
4	Electrical and thermal transport properties of iron and ironâ€silicon alloy at high pressure. Geophysical Research Letters, 2013, 40, 5377-5381.	1.5	89
5	Network analysis of mineralogical systems. American Mineralogist, 2017, 102, 1588-1596.	0.9	63
6	Origin of Nanoscale Phase Stability Reversals in Titanium Oxide Polymorphs. Journal of Physical Chemistry C, 2009, 113, 4240-4245.	1.5	62
7	Synthesis and crystal chemistry of Fe3+-bearing (Mg,Fe3+)(Si,Fe3+)O3 perovskite. American Mineralogist, 2012, 97, 1915-1921.	0.9	47
8	Data-Driven Discovery in Mineralogy: Recent Advances in Data Resources, Analysis, and Visualization. Engineering, 2019, 5, 397-405.	3.2	47
9	Carbon mineral ecology: Predicting the undiscovered minerals of carbon. American Mineralogist, 2016, 101, 889-906.	0.9	46
10	Cobalt mineral ecology. American Mineralogist, 2017, 102, 108-116.	0.9	43
11	Speciation of <scp>l</scp> -DOPA on Nanorutile as a Function of pH and Surface Coverage Using Surface-Enhanced Raman Spectroscopy (SERS). Langmuir, 2012, 28, 17322-17330.	1.6	32
12	The effect of oxidation on the mineralogy and magnetic properties of olivine. American Mineralogist, 2019, 104, 694-702.	0.9	32
13	Chromium mineral ecology. American Mineralogist, 2017, 102, 612-619.	0.9	31
14	In situ observations of particle size evolution during the hydrothermal crystallization of TiO2: A time-resolved synchrotron SAXS and WAXS study. Journal of Crystal Growth, 2012, 344, 51-58.	0.7	30
15	Exploring Carbon Mineral Systems: Recent Advances in C Mineral Evolution, Mineral Ecology, and Network Analysis. Frontiers in Earth Science, 2020, 8, .	0.8	29
16	Analysis and visualization of vanadium mineral diversity and distribution. American Mineralogist, 2018, 103, 1080-1086.	0.9	28
17	Using Visual Exploratory Data Analysis to Facilitate Collaboration and Hypothesis Generation in Cross-Disciplinary Research. ISPRS International Journal of Geo-Information, 2017, 6, 368.	1.4	27
18	Global earth mineral inventory: A data legacy. Geoscience Data Journal, 2021, 8, 74-89.	1.8	21

DANIEL R HUMMER

#	Article	IF	CITATIONS
19	Single-Site and Monolayer Surface Hydration Energy of Anatase and Rutile Nanoparticles Using Density Functional Theory. Journal of Physical Chemistry C, 2013, 117, 26084-26090.	1.5	18
20	The Co-Evolution of Fe-Oxides, Ti-Oxides, and Other Microbially Induced Mineral Precipitates In Sandy Sediments: Understanding the Role of Cyanobacteria In Weathering and Early Diagenesis. Journal of Sedimentary Research, 2015, 85, 1213-1227.	0.8	16
21	Evidence for the oxidation of Earth's crust from the evolution of manganese minerals. Nature Communications, 2022, 13, 960.	5.8	15
22	Habitability of hydrothermal systems at Jezero and Gusev Craters as constrained by hydrothermal alteration of a terrestrial mafic dike. Chemie Der Erde, 2020, 80, 125613.	0.8	12
23	Deep Carbon through Deep Time. , 2019, , 620-652.		10
24	AN EXPERIMENTAL LOOK AT THE TAPHONOMY OF CYANOBACTERIAL MATS IN SILICICLASTIC SEDIMENTS. Palaios, 2017, 32, 725-738.	0.6	7
25	Applications of time-resolved synchrotron X-ray diffraction to cation exchange, crystal growth and biomineralization reactions. Mineralogical Magazine, 2008, 72, 179-184.	0.6	4
26	Crystal structure of abelsonite, the only known crystalline geoporphyrin. American Mineralogist, 2017, , .	0.9	4
27	Corrections to "Thermal expansion of anatase and rutile between 300 and 575 K using synchrotron powder X-ray diffraction―[Powder Diffr. 22, 352–357 (2007)]. Powder Diffraction, 2008, 23, 267-267.	0.4	3
28	MinKin: A kinetic modeling program for the precipitation, dissolution, and phase transformation of minerals in aqueous solution. Chemical Geology, 2015, 405, 112-122.	1.4	3
29	Fractal distribution of mineral species among the crystallographic point groups. American Mineralogist, 2021, 106, 1574-1579.	0.9	2
30	Rowleyite, [Na(NH4,K)9Cl4][V25+,4+(P,As)O8]6·n[H2O,Na,NH4,K,Cl]â , a new mineral with a microporous framework structure. American Mineralogist, 2017, , .	0.9	1
31	ECOLOGY AND EVOLUTION OF MANGANESE MINERALS: IMPLICATIONS FOR THE REDOX HISTORY OF EARTH AND LIFE. , 2018, , .		1