Patricia Alejandra MuÃ'oz Salvatierra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/764222/publications.pdf

Version: 2024-02-01

25 papers 1,852 citations

448610 19 h-index 620720 26 g-index

26 all docs

26 docs citations

26 times ranked 2643 citing authors

#	Article	IF	Citations
1	Neuroprotection against Aminochrome Neurotoxicity: Glutathione Transferase M2-2 and DT-Diaphorase. Antioxidants, 2022, 11, 296.	2.2	11
2	Astrocytes protect dopaminergic neurons against aminochrome neurotoxicity. Neural Regeneration Research, 2022, 17, 1861.	1.6	23
3	Cellular Trafficking of Glutathione Transferase M2-2 Between U373MG and SHSY-S7 Cells is Mediated by Exosomes. Neurotoxicity Research, 2021, 39, 182-190.	1.3	12
4	DT-Diaphorase Prevents Aminochrome-Induced Lysosome Dysfunction in SH-SY5Y Cells. Neurotoxicity Research, 2019, 35, 255-259.	1.3	29
5	Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Progress in Neurobiology, 2017, 155, 96-119.	2.8	490
6	Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease?. ACS Chemical Neuroscience, 2017, 8, 702-711.	1.7	118
7	On the Role of Mining Exposure in Epigenetic Effects in Parkinson's Disease. Neurotoxicity Research, 2017, 32, 172-174.	1.3	13
8	On the Role of DT-Diaphorase Inhibition in Aminochrome-Induced Neurotoxicity In Vivo. Neurotoxicity Research, 2017, 32, 134-140.	1.3	19
9	The Importance of Mitophagy in Maintaining Mitochondrial Function in U373MG Cells. Bafilomycin A1 Restores Aminochrome-Induced Mitochondrial Damage. ACS Chemical Neuroscience, 2017, 8, 2247-2253.	1.7	30
10	Autophagy protects against neural cell death induced by piperidine alkaloids present in Prosopis juliflora (Mesquite). Anais Da Academia Brasileira De Ciencias, 2017, 89, 247-261.	0.3	8
11	Commentary: A Humanized Clinically Calibrated Quantitative Systems Pharmacology Model for Hypokinetic Motor Symptoms in Parkinson's Disease. Frontiers in Pharmacology, 2016, 7, 179.	1.6	3
12	Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease. Cellular and Molecular Life Sciences, 2016, 73, 3583-3597.	2.4	34
13	DT-diaphorase protects astrocytes from aminochrome-induced toxicity. NeuroToxicology, 2016, 55, 10-12.	1.4	25
14	Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotoxicity Research, 2016, 30, 41-52.	1.3	88
15	Aminochrome Toxicity is Mediated by Inhibition of Microtubules Polymerization Through the Formation of Adducts with Tubulin. Neurotoxicity Research, 2016, 29, 381-393.	1.3	32
16	Aminochrome as New Preclinical Model to Find New Pharmacological Treatment that Stop the Development of Parkinson's Disease. Current Medicinal Chemistry, 2016, 23, 346-359.	1.2	32
17	Glutathione Transferase-M2-2 Secreted from Glioblastoma Cell Protects SH-SY5Y Cells from Aminochrome Neurotoxicity. Neurotoxicity Research, 2015, 27, 217-228.	1.3	44
18	DT-Diaphorase Prevents Aminochrome-Induced Alpha-Synuclein Oligomer Formation and Neurotoxicity. Toxicological Sciences, 2015, 145, 37-47.	1.4	64

#	Article	IF	CITATIONS
19	Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy, 2014, 10, 618-630.	4.3	59
20	Protective and toxic roles of dopamine in Parkinson's disease. Journal of Neurochemistry, 2014, 129, 898-915.	2.1	366
21	Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1125-1136.	1.8	49
22	Dopamine Oxidation and Autophagy. Parkinson's Disease, 2012, 2012, 1-13.	0.6	120
23	Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line. Toxicological Sciences, 2011, 121, 376-388.	1.4	63
24	Aminochrome Induces Disruption of Actin, Alpha-, and Beta-Tubulin Cytoskeleton Networks in Substantia-Nigra-Derived Cell Line. Neurotoxicity Research, 2010, 18, 82-92.	1.3	74
25	Stable Expression of Short Interfering RNA for DT-Diaphorase Induces Neurotoxicity. Chemical Research in Toxicology, 2010, 23, 1492-1496.	1.7	43