Yu Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7642174/publications.pdf

Version: 2024-02-01

304602 360920 1,511 35 70 22 citations h-index g-index papers 70 70 70 1594 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Preparation of MOF Film/Aerogel Composite Catalysts via Substrateâ€Seeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO ₂ Cycloaddition. Angewandte Chemie - International Edition, 2021, 60, 701-705.	7.2	107
2	Wavelengthâ€Controlled Dynamic Metathesis: A Lightâ€Driven Exchange Reaction between Disulfide and Diselenide Bonds. Angewandte Chemie - International Edition, 2018, 57, 16426-16430.	7.2	103
3	Microenvironment of MOF Channel Coordination with Pt NPs for Selective Hydrogenation of Unsaturated Aldehydes. ACS Catalysis, 2020, 10, 5805-5813.	5.5	88
4	A facile PDMS coating approach to room-temperature gas sensors with high humidity resistance and long-term stability. Sensors and Actuators B: Chemical, 2020, 325, 128810.	4.0	69
5	Fabrication of MOF Thin Films at Miscible Liquid–Liquid Interface by Spray Method. ACS Applied Materials & Discrete Representation of MOF Thin Films at Miscible Liquid–Liquid Interface by Spray Method. ACS Applied Materials & Discrete Representation of MOF Thin Films at Miscible Liquid–Liquid Interface by Spray Method. ACS Applied Materials & Discrete Representation of MOF Thin Films at Miscible Liquid–Liquid Interface by Spray Method. ACS Applied Materials & Discrete Representation of MOF Thin Films at Miscible Liquid–Liquid Interface by Spray Method. ACS Applied Materials & Discrete Representation of MOF Thin Films at Miscible Liquid–Liquid Interface by Spray Method. ACS Applied Materials & Discrete Representation of MoF Thin Films at Miscible Liquid—Liquid Interface by Spray Method. ACS Applied Materials & Discrete Representation of MoF Thin Films at Miscible Liquid†(No. 1998) and Discrete Representation of MoF Thin Films at Miscible Representation of MoF Thin Films at Miscibl	4.0	64
6	Construction of Zn/Ni Bimetallic Organic Framework Derived ZnO/NiO Heterostructure with Superior <i>N</i> -Propanol Sensing Performance. ACS Applied Materials & Interfaces, 2021, 13, 9206-9215.	4.0	59
7	Fabrication of Metal–Organic Framework and Infinite Coordination Polymer Nanosheets by the Spray Technique. Langmuir, 2017, 33, 1060-1065.	1.6	53
8	Electrochemical oxidation of 5-hydroxymethylfurfural on ternary metal–organic framework nanoarrays: enhancement from electronic structure modulation. Journal of Materials Chemistry A, 2021, 9, 14270-14275.	5.2	48
9	Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol. Journal of Membrane Science, 2019, 582, 30-36.	4.1	45
10	Multicomponent metal–organic framework derivatives for optimizing the selective catalytic performance of styrene epoxidation reaction. Nanoscale, 2018, 10, 8772-8778.	2.8	40
11	An Electrochemical Sensor for H ₂ O ₂ Based on Au Nanoparticles Embedded in UiO-66 Metal–Organic Framework Films. ACS Applied Nano Materials, 2021, 4, 6103-6110.	2.4	39
12	Site-directed reduction engineering within bimetal-organic frameworks for efficient size-selective catalysis. Matter, 2021, 4, 2919-2935.	5.0	36
13	An ultra-high quantum yield Tb-MOF with phenolic hydroxyl as the recognition group for a highly selective and sensitive detection of Fe ³⁺ . Journal of Materials Chemistry C, 2021, 9, 15840-15847.	2.7	36
14	Thermal Shrinkage Behavior of Metal–Organic Frameworks. Advanced Functional Materials, 2020, 30, 2001389.	7.8	35
15	Pd-Decorated PdO Hollow Shells: A H ₂ -Sensing System in Which Catalyst Nanoparticle and Semiconductor Support are Interconvertible. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42971-42981.	4.0	32
16	Dynamic Tunable Color Display Based on Metal–Insulator–Metal Resonator with Polymer Brush Insulator Layer as Signal Transducer. ACS Applied Materials & mp; Interfaces, 2019, 11, 41668-41675.	4.0	29
17	Copper oxide hierarchical morphology derived from MOF precursors for enhancing ethanol vapor sensing performance. Journal of Materials Chemistry C, 2020, 8, 9671-9677.	2.7	29
18	Characterization and optimization of the H2 sensing performance of Pd hollow shells. Sensors and Actuators B: Chemical, 2019, 295, 101-109.	4.0	27

#	Article	IF	CITATIONS
19	Fabrication of 2D metal–organic framework nanosheet@fiber composites by spray technique. Chemical Communications, 2019, 55, 8293-8296.	2.2	26
20	Exploring the Fundamental Roles of Functionalized Ligands in Platinum@Metal–Organic Framework Catalysts. ACS Applied Materials & Samp; Interfaces, 2020, 12, 52660-52667.	4.0	26
21	Naked eye plasmonic indicator with multi-responsive polymer brush as signal transducer and amplifier. Nanoscale, 2017, 9, 1925-1933.	2.8	24
22	Amorphous FeNi-bimetallic infinite coordination polymers as advanced electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2019, 55, 12567-12570.	2.2	24
23	Enhancing the Hydrogen-Sensing Performance of p-Type PdO by Modulating the Conduction Model. ACS Applied Materials & Diterfaces, 2021, 13, 52754-52764.	4.0	24
24	MOF-derived CuCoNi trimetallic hybrids as efficient oxygen evolution reaction electrocatalysts. New Journal of Chemistry, 2020, 44, 2459-2464.	1.4	23
25	CoNi-based metal–organic framework nanoarrays supported on carbon cloth as bifunctional electrocatalysts for efficient water-splitting. New Journal of Chemistry, 2020, 44, 1694-1698.	1.4	21
26	Efficient Nonâ€Precious Metal Catalyst for Propane Dehydrogenation: Atomically Dispersed Cobaltâ€nitrogen Compounds on Carbon Nanotubes. ChemCatChem, 2021, 13, 3067-3073.	1.8	21
27	Metallic Nanoshells with Sub-10 nm Thickness and Their Performance as Surface-Enhanced Spectroscopy Substrate. ACS Applied Materials & Spectroscopy Substrate. ACS Applied Materials & Spectroscopy Substrate.	4.0	20
28	Transitional MOFs: Exposing Metal Sites with Porosity for Enhancing Catalytic Reaction Performance. ACS Applied Materials & Eamp; Interfaces, 2020, 12, 23968-23975.	4.0	20
29	Preparation of hierarchical trimetallic coordination polymer film as efficient electrocatalyst for oxygen evolution reaction. Chemical Communications, 2019, 55, 9343-9346.	2.2	19
30	Fabrication of mesoporous MOF nanosheets via surfactant-template method for C–S coupling reactions. Microporous and Mesoporous Materials, 2020, 303, 110254.	2,2	19
31	Visual Detection of Thiocyanate Based on Fabry–Perot Etalons with a Responsive Polymer Brush as the Transducer. ACS Sensors, 2020, 5, 303-307.	4.0	18
32	Controllable Fabrication of PdOâ€PdAu Ternary Hollow Shells: Synergistic Acceleration of H ₂ â€Sensing Speed via Morphology Regulation and Electronic Structure Modulation. Small, 2022, 18, e2106874.	5.2	17
33	Fabrication of 2D Metal–Organic Framework Nanosheets with Highly Colloidal Stability and High Yield through Coordination Modulation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39755-39762.	4.0	15
34	Fabrication of a robust MOF/aerogel composite <i>via</i> a covalent post-assembly method. Chemical Communications, 2021, 57, 5961-5964.	2.2	15
35	Prediction Descriptor for Catalytic Activity of Platinum Nanoparticles/Metal–Organic Framework Composites. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38325-38332.	4.0	14
36	Preparation of Hierarchically Porous Metal–Organic Frameworks ⟨i>via⟨ i> Slow Chemical Vapor Etching for CO⟨sub⟩2⟨ sub⟩ Cycloaddition. Inorganic Chemistry, 2022, 61, 6881-6887.	1.9	13

#	Article	IF	CITATIONS
37	Fabrication of wide-detection-range H ₂ sensors with controllable saturation behavior using Au@Pd nanoparticle arrays. Chemical Communications, 2020, 56, 12636-12639.	2.2	12
38	Preparation of Superhydrophobic Metal–Organic Framework/Polymer Composites as Stable and Efficient Catalysts. ACS Applied Materials & Stable and Interfaces, 2021, 13, 32175-32183.	4.0	12
39	Swelling-induced 3D photopatterning on a diselenide-containing elastomer. Journal of Materials Chemistry C, 2019, 7, 10777-10782.	2.7	11
40	Sea urchin-like CuO particles prepared using Cu ₃ (PO ₄) ₂ flowers as precursor for high-performance ethanol sensing. Nanotechnology, 2020, 31, 165504.	1.3	11
41	Novel Zinc-Based Infinite Coordination Polymer for Highly Selective Ammonia Gas Sensing at Room Temperature. Bulletin of the Chemical Society of Japan, 2020, 93, 1070-1073.	2.0	11
42	Pseudomorphic Replacement in the Transformation between Metal–Organic Frameworks toward Three-Dimensional Hierarchical Nanostructures. Chemistry of Materials, 2022, 34, 5356-5365.	3.2	11
43	A dual-emissive europium-based metal–organic framework for selective and sensitive detection of Fe ³⁺ and Fe ²⁺ . Dalton Transactions, 2021, 50, 13823-13829.	1.6	10
44	Fabrication of Metal Nanoparticle Composites by Slow Chemical Reduction of Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 16447-16454.	1.9	10
45	Optimally designed gold nanorattles with strong built-in hotspots and weak polarization dependence. Nanotechnology, 2017, 28, 495201.	1.3	8
46	Fabrication of hierarchically flower-like trimetallic coordination polymers via ion-exchange strategy for efficient electrocatalytic oxygen evolution. Journal of Electroanalytical Chemistry, 2021, 883, 115036.	1.9	8
47	Pd-decorated PdO nanoparticle nanonetworks: A low-cost eye-readable H2 indicator with reactivation ability. Sensors and Actuators B: Chemical, 2022, 368, 132242.	4.0	8
48	Transfer of ordered nanoparticle array and its application in high-modulus membrane fabrication. Journal of Materials Chemistry C, 2014, 2, 6410.	2.7	7
49	Fabrication of Monodisperse Flower-Like Coordination Polymers (CP) Microparticles by Spray Technique. Nanomaterials, 2017, 7, 237.	1.9	7
50	Structural and Morphological Transformation of Two-Dimensional Metal–Organic Frameworks Accompanied by Controlled Preparation Using the Spray Method. Langmuir, 2020, 36, 7392-7399.	1.6	7
51	Construction of hierarchically porous metal-organic frameworks via vapor atmosphere etching. Science China Materials, 2022, 65, 3062-3068.	3.5	7
52	Preparation of Bimetallic Metal-Organic Framework Microflowers by Spray Method. Bulletin of the Chemical Society of Japan, 2019, 92, 175-177.	2.0	6
53	Solid-state structural transformation of Zn(II)-bpe coordination polymers triggered by dual stimuli. Journal of Solid State Chemistry, 2020, 292, 121635.	1.4	6
54	Preparation of MOF Film/Aerogel Composite Catalysts via Substrateâ€Seeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO 2 Cycloaddition. Angewandte Chemie, 2021, 133, 711-715.	1.6	6

#	Article	IF	CITATIONS
55	Anisotropic MOF-on-MOF Growth of Isostructural Multilayer Metal–Organic Framework Heterostructures. Research, 2021, 2021, 9854946.	2.8	6
56	Dynamic Color Display with Viewing-Angle Tolerance Based on the Responsive Asymmetric Fabry–Perot Cavity. ACS Applied Materials & Interfaces, 2022, 14, 7200-7207.	4.0	6
57	Synthesis of FeNiCo Ternary Hydroxides through Green Grinding Method with Metalâ€Organic Frameworks as Precursors for Oxygen Evolution Reaction. ChemSusChem, 2021, 14, 5042-5048.	3.6	5
58	Fabrication of a MOF/Aerogel Composite via a Mild and Green One-Pot Method. Bulletin of the Chemical Society of Japan, 2021, 94, 2477-2483.	2.0	5
59	Construction of a Hierarchical Structure of Bimetallic Oxide Derived from Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 8043-8052.	1.9	5
60	Fabrication of Hierarchical Quaternary Architectures of Metal–Organic Frameworks through Programmed Transformation. Inorganic Chemistry, 2022, 61, 7173-7179.	1.9	4
61	Oriented self-assembly of metal–organic frameworks driven by photoinitiated monomer polymerization. RSC Advances, 2022, 12, 19406-19411.	1.7	4
62	Thermal Annealing: A Facile Way of Conferring Responsivity to Inert Alkyl-Chain-Passivated Nanoparticle Arrays. Langmuir, 2014, 30, 13052-13057.	1.6	3
63	A Novel Strategy for Fabricating a Strong Nanoparticle Monolayer and Its Enhanced Mechanism. Nanomaterials, 2019, 9, 1468.	1.9	3
64	The Fabrication of Rigid Crosslinker-Decorated Gold Nanoparticle Array Film for Catalyzing CO2 Cycloaddition. Bulletin of the Chemical Society of Japan, 2019, 92, 2004-2011.	2.0	3
65	Construction of hierarchical-porous metal–organic frameworks through esterification reaction for efficient catalysis. Chemical Communications, 2021, 57, 10795-10798.	2.2	3
66	2-Methylimidazole-Induced Synthesis of 2D Amorphous FeCoNi Ternary Hydroxides Nanosheets by Mechanochemical Approach for Oxygen Evolution Reaction. Bulletin of the Chemical Society of Japan, 2022, 95, 178-184.	2.0	3
67	Preparation of MOF catalysts and simultaneously modulated metal nodes and ligands via a one-pot method for optimizing cycloaddition reactions. New Journal of Chemistry, 2020, 44, 9611-9615.	1.4	2
68	Lab-on-fiber sensing system based on responsive Fabry-Perot optical resonance cavities prepared through in-situ construction strategy. Nanotechnology, 2021, 32, .	1.3	1
69	Synthesis of amorphous FeNiCo trimetallic hybrid electrode from ZIF precursors for efficient oxygen evolution reaction. Nanotechnology, 2022, 33, 035403.	1.3	1
70	UV-Responsive, wide color gamut, inkless dynamic photonic paper enabled by disulfide-containing polyurethane based Fabry-Perot resonant cavity. Journal of Materials Chemistry C, 0, , .	2.7	1