
Vladimir V Velmiskin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7642154/publications.pdf Version: 2024-02-01

VIADIMID V VELMISKIN

#	Article	IF	CITATIONS
1	Single-frequency continuous-wave laser based on the novel Er/Yb-doped composite phosphosilicate fiber. Optics and Laser Technology, 2022, 151, 108049.	4.6	4
2	Spectral filtering in single-mode fibers using resonant coupling with absorbing rods. Optics Letters, 2021, 46, 1458.	3.3	6
3	Spectrally selective fundamental core mode suppression in an optical fiber with absorbing rods. , 2021, , .		Ο
4	Er-Doped Tapered Fiber Amplifier for High Peak Power Sub-ns Pulse Amplification. Photonics, 2021, 8, 523.	2.0	4
5	Generation of Chirped Femtosecond Pulses Near 977 nm Using a Mode-Locked All-Fiber Laser. IEEE Photonics Technology Letters, 2020, 32, 811-814.	2.5	10
6	High-order mode suppression in double-clad optical fibers by adding absorbing inclusions. Scientific Reports, 2020, 10, 7174.	3.3	15
7	All-fiber mode-locked laser at 0.98 µm. , 2020, , .		Ο
8	All-fiber mode-locked laser at 977 nm. , 2020, , .		0
9	All-fiber polarization-maintaining mode-locked laser operated at 980  nm. Optics Letters, 2020, 45, 227	5. 3.3	17
10	71 W Average Power Sub-MW Peak Power Diffraction-Limited Monolithic Tapered Fiber Amplifier. , 2019, , .		1
11	All-Fiber Single-Mode PM Yb-Doped Pre-Amplifier at 0.976 μm. , 2019, , .		1
12	Tapered erbium-doped fibre laser system delivering 10 MW of peak power. Quantum Electronics, 2019, 49, 1093-1099.	1.0	13
13	All-fibre single-mode small-signal amplifier operating near 0.976 μm. Quantum Electronics, 2019, 49, 919-924.	1.0	14
14	Microstructure, composition, and luminescent properties of bismuth-doped porous glass and optical fiber preforms. Journal of Non-Crystalline Solids, 2019, 503-504, 28-35.	3.1	10
15	High Peak and Average Power Yb-doped Tapered Fiber Amplifier. , 2019, , .		2
16	Undesirable Modes Suppression in Double-Clad Fibers by Adding Absorbing Inclusions to the First Cladding. , 2019, , .		1
17	Synthesis of glasses with a high content of divalent tin and fabrication of fiber lightguides based on them. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2019, 86, 661.	0.4	1
18	Phase Separation and Crystallization of Phosphate–Silicate Glass Cores of Preforms of Fiber Optics. Glass Physics and Chemistry, 2018, 44, 137-144.	0.7	5

VLADIMIR V VELMISKIN

#	Article	IF	CITATIONS
19	Use of nanoporous glass for the fabrication of heavily bismuth-doped active optical fibres. Quantum Electronics, 2018, 48, 658-661.	1.0	9
20	107-kW-Peak-Power 2-ns Pulse Tapered Er-doped Fiber Amplifier. , 2018, , .		5
21	Raman fiber laser with random distributed feedback based on a twin-core fiber. Optics Letters, 2018, 43, 567.	3.3	18
22	MW Peak Power Diffraction-limited Chirped-pulse Yb-doped Tapered Fiber Amplifier. , 2018, , .		0
23	Laser potencial of calcium aluminate glasses. , 2018, , .		Ο
24	Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier. Optics Express, 2017, 25, 26958.	3.4	69
25	Hollow-core microstructured 'revolver' fibre for the UV spectral range. Quantum Electronics, 2016, 46, 1129-1133.	1.0	16
26	Synthesis and photoluminescent properties of SnO-containing germanate and germanosilicate glasses. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	6
27	Luminescence properties of IR-emitting bismuth centres in SiO ₂ -based glasses in the UV to near-IR spectral region. Quantum Electronics, 2015, 45, 59-65.	1.0	46
28	The Yb-doped aluminosilicate fibers photodarkening mechanism based on the charge-transfer state excitation. Proceedings of SPIE, 2014, , .	0.8	5
29	High-repetition-rate quasi-CW side-pumped mJ eye-safe laser with a monolithic KTP crystal for intracavity optical parametric oscillator. Optics Express, 2014, 22, 7625.	3.4	22
30	Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser. Optics Express, 2014, 22, 7632.	3.4	38
31	Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres. Quantum Electronics, 2014, 44, 1129-1135.	1.0	19
32	Composite laser fiber with Yb, Er co-doped phosphate glass core and silica cladding. Laser Physics Letters, 2013, 10, 055109.	1.4	15
33	Anti-Stokes luminescence in Bismuth-doped silica and germania-based fibers. Optics Express, 2013, 21, 18408.	3.4	19
34	Fabrication of Bragg gratings in microstructured and step index Bi-SiO_2 optical fibers using an ArF laser. Optics Express, 2012, 20, B118.	3.4	3
35	Optical properties of Bi-doped Mg-Al silicate glasses and fibers. , 2012, , .		1
36	Bismuth-doped Mg — Al silicate glasses and fibres. Quantum Electronics, 2012, 42, 770-773.	1.0	1

#	Article	IF	CITATIONS
37	Optical properties of bismuth-doped silica fibres in the temperature range 300 — 1500 K. Quantum Electronics, 2012, 42, 762-769.	1.0	30
38	Active material for fiber core made by powder-in-tube method: subsequent homogenization by means of stack-and-draw technique. , 2012, , .		7
39	Optical gain and laser generation in bismuth-doped silica fibers free of other dopants. Optics Letters, 2011, 36, 166.	3.3	62
40	Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core. Quantum Electronics, 2011, 40, 1137-1140.	1.0	2
41	LMA fibers based on two-dimensional solid-core photonic bandgap fiber design. Proceedings of SPIE, 2010, , .	0.8	2
42	Optical properties of active bismuth centres in silica fibres containing no other dopants. Quantum Electronics, 2010, 40, 639-641.	1.0	40