Chi-Sing Leung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7642149/publications.pdf

Version: 2024-02-01

185 papers	2,477 citations	218381 26 h-index	42 g-index
190	190	190	1582 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Two noise tolerant incremental learning algorithms for single layer feed-forward neural networks. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 15643-15657.	3.3	2
2	Constrained Center Loss for Convolutional Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 1080-1088.	7.2	2
3	Sparse Index Tracking With K-Sparsity or Ϊμ-Deviation Constraint via â,," ₀ -Norm Minimization. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 10930-10943.	7.2	6
4	A Local Correspondence-Aware Hybrid CNN-GCN Model for Single-Image Human Body Reconstruction. IEEE Transactions on Multimedia, 2023, 25, 4679-4690.	5.2	0
5	DNN- <i>k</i> WTA With Bounded Random Offset Voltage Drifts in Threshold Logic Units. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 3184-3192.	7.2	3
6	Interactive Deep Colorization and its Application for Image Compression. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 1557-1572.	2.9	4
7	Noise/fault aware regularization for incremental learning in extreme learning machines. Neurocomputing, 2022, 486, 200-214.	3.5	8
8	Mode Recognition of Rectangular Dielectric Resonator Antenna Using Artificial Neural Network. IEEE Transactions on Antennas and Propagation, 2022, 70, 5209-5216.	3.1	6
9	All Frequency Direct Illumination Using Visibility Correspondence Generated With Spherical Voronoi Diagrams. IEEE Access, 2021, 9, 81296-81313.	2.6	O
10	Regularization Effect of Random Node Fault/Noise on Gradient Descent Learning Algorithm. IEEE Transactions on Neural Networks and Learning Systems, 2021, PP, 1-14.	7.2	1
11	A Fault Aware Broad Learning System for Concurrent Network Failure Situations. IEEE Access, 2021, 9, 46129-46142.	2.6	4
12	Analysis on Noisy Boltzmann Machines and Noisy Restricted Boltzmann Machines. IEEE Access, 2021, 9, 112955-112965.	2.6	2
13	Evaluating Non-Hierarchical Overflow Loss Systems Using Teletraffic Theory and Neural Networks. IEEE Communications Letters, 2021, 25, 1486-1490.	2.5	3
14	Theoretical analysis and image reconstruction for multi-bit quanta image sensors. Signal Processing, 2021, 185, 108087.	2.1	3
15	A Globally Stable LPNN Model for Sparse Approximation. IEEE Transactions on Neural Networks and Learning Systems, 2021, PP, 1-9.	7.2	2
16	GPU-accelerated 2D OTSU and 2D entropy-based thresholding. Journal of Real-Time Image Processing, 2020, 17, 993-1005.	2.2	3
17	A Limitation of Gradient Descent Learning. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 2227-2232.	7.2	13
18	Robust ellipse fitting based on Lagrange programming neural network and locally competitive algorithm. Neurocomputing, 2020, 399, 399-413.	3.5	10

#	Article	IF	CITATIONS
19	Analysis on the Boltzmann Machine with Random Input Drifts in Activation Function. Lecture Notes in Computer Science, 2020, , 162-171.	1.0	0
20	Enhancement of Extreme Learning Machine for Estimating Blocking Probability of OCS Networks With Fixed-Alternate Routing. IEEE Access, 2019, 7, 52319-52330.	2.6	6
21	An \$ell_0\$ -Norm-Based Centers Selection for Failure Tolerant RBF Networks. IEEE Access, 2019, 7, 151902-151914.	2.6	4
22	Fault and Noise Tolerance in the Incremental Extreme Learning Machine. IEEE Access, 2019, 7, 155171-155183.	2.6	16
23	Learning Algorithm for Boltzmann Machines With Additive Weight and Bias Noise. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 3200-3204.	7.2	8
24	Interactive Deep Colorization Using Simultaneous Global and Local Inputs., 2019,,.		37
25	Orthogonal least squares based center selection for fault-tolerant RBF networks. Neurocomputing, 2019, 339, 217-231.	3.5	10
26	Seamless Mipmap Filtering for Dual Paraboloid Maps. Computer Graphics Forum, 2019, 38, 437-448.	1.8	0
27	Explicit Center Selection and Training for Fault Tolerant RBF Networks. Lecture Notes in Computer Science, 2019, , 273-285.	1.0	0
28	Analysis on Dropout Regularization. Communications in Computer and Information Science, 2019, , 253-261.	0.4	3
29	Summed Area Tables for Cube Maps. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 2773-2786.	2.9	1
30	On Wang \$k\$ WTA With Input Noise, Output Node Stochastic, and Recurrent State Noise. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 4212-4222.	7.2	6
31	Robustness Analysis on Dual Neural Network-based \$k\$ WTA With Input Noise. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 1082-1094.	7.2	15
32	An analog neural network approach for the least absolute shrinkage and selection operator problem. Neural Computing and Applications, 2018, 29, 389-400.	3.2	7
33	Augmented Lagrange Programming Neural Network for Localization Using Time-Difference-of-Arrival Measurements. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 3879-3884.	7.2	25
34	Scribble-based gradient mesh recoloring. Multimedia Tools and Applications, 2018, 77, 13753-13771.	2.6	7
35	Lagrange Programming Neural Network Approaches for Robust Time-of-Arrival Localization. Cognitive Computation, 2018, 10, 23-34.	3.6	15
36	A Robust LPNN Technique for Target Localization Under Hybrid TOA/AOA Measurements. Lecture Notes in Computer Science, 2018, , 308-320.	1.0	0

3

#	Article	IF	Citations
37	ADMM-Based Algorithm for Training Fault Tolerant RBF Networks and Selecting Centers. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 3870-3878.	7.2	23
38	Fault-Resistant Algorithms for Single Layer Neural Networks. Lecture Notes in Computer Science, 2018, , 680-689.	1.0	0
39	Sparse and Truncated Nuclear Norm Based Tensor Completion. Neural Processing Letters, 2017, 45, 729-743.	2.0	17
40	Editorial for Special Issue on ICONIP 2014. Neural Processing Letters, 2017, 45, 727-728.	2.0	0
41	A Regularizer Approach for RBF Networks Under the Concurrent Weight Failure Situation. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, 1360-1372.	7.2	33
42	Lagrange Programming Neural Network for Nondifferentiable Optimization Problems in Sparse Approximation. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, 2395-2407.	7.2	41
43	Extreme Learning Machine for Estimating Blocking Probability of Bufferless OBS/OPS Networks. Journal of Optical Communications and Networking, 2017, 9, 682.	3.3	24
44	Properties and learning algorithms for faulty RBF networks with coexistence of weight and node failures. Neurocomputing, 2017, 224, 166-176.	3.5	10
45	A Generalized I-ELM Algorithm for Handling Node Noise in Single-Hidden Layer Feedforward Networks. Lecture Notes in Computer Science, 2017, , 424-433.	1.0	1
46	Noise Resistant Training for Extreme Learning Machine. Lecture Notes in Computer Science, 2017, , 257-265.	1.0	0
47	LCA based RBF training algorithm for the concurrent fault situation. Neurocomputing, 2016, 191, 341-351.	3.5	8
48	Fault-Tolerant Incremental Learning for Extreme Learning Machines. Lecture Notes in Computer Science, 2016, , 168-176.	1.0	2
49	Lagrange Programming Neural Network Approach for Target Localization in Distributed MIMO Radar. IEEE Transactions on Signal Processing, 2016, 64, 1574-1585.	3.2	85
50	Objective Function and Learning Algorithm for the General Node Fault Situation. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 863-874.	7.2	8
51	A Robust TOA Source Localization Algorithm Based on LPNN. Lecture Notes in Computer Science, 2016, , 367-375.	1.0	2
52	Analysis of the DNN-kWTA Network Model with Drifts in the Offset Voltages of Threshold Logic Units. Lecture Notes in Computer Science, 2016, , 270-278.	1.0	2
53	Optimizationâ€Based Gradient Mesh Colour Transfer. Computer Graphics Forum, 2015, 34, 123-134.	1.8	4
54	Waveform Design With Unit Modulus and Spectral Shape Constraints via Lagrange Programming Neural Network. IEEE Journal on Selected Topics in Signal Processing, 2015, 9, 1377-1386.	7.3	63

#	Article	IF	CITATIONS
55	Online training and its convergence for faulty networks with multiplicative weight noise. Neurocomputing, 2015, 155, 53-61.	3.5	10
56	Editorial for Special Issue on ICONIP 2013. Neural Processing Letters, 2015, 41, 309-310.	2.0	0
57	All-Frequency Direct Illumination with Vectorized Visibility. IEEE Transactions on Visualization and Computer Graphics, 2015, 21, 945-958.	2.9	3
58	Properties and Performance of Imperfect Dual Neural Network-Based & lt; inline-formula & gt; & lt; tex-math notation="LaTeX" & gt; \$k\$ & lt; \tex-math & gt; & lt; \tex-math & g	7.2	12
59	GPU Accelerated Self-Organizing Map for High Dimensional Data. Neural Processing Letters, 2015, 41, 341-355.	2.0	6
60	Online Training for Open Faulty RBF Networks. Neural Processing Letters, 2015, 42, 397-416.	2.0	0
61	Non-Line-of-Sight Mitigation via Lagrange Programming Neural Networks in TOA-Based Localization. Lecture Notes in Computer Science, 2015, , 190-197.	1.0	1
62	Lagrange Programming Neural Network for the $ -1$ -norm Constrained Quadratic Minimization. Lecture Notes in Computer Science, 2015, , 119-126.	1.0	1
63	Noise on Gradient Systems with Forgetting. Lecture Notes in Computer Science, 2015, , 479-487.	1.0	0
64	An analog network approach to train RBF networks based on sparse recovery. , 2014, , .		0
65	Lagrange programming neural networks for time-of-arrival-based source localization. Neural Computing and Applications, 2014, 24, 109-116.	3.2	27
66	An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network. Cognitive Computation, 2014, 6, 293-303.	3.6	1
67	Recurrent networks for compressive sampling. Neurocomputing, 2014, 129, 298-305.	3.5	15
68	The Performance of the Stochastic DNN-kWTA Network. Lecture Notes in Computer Science, 2014, , 279-286.	1.0	0
69	Online Learning for Faulty RBF Networks with the Concurrent Fault. Lecture Notes in Computer Science, 2014, , 271-278.	1.0	0
70	Editorial for special issue on ICONIP2011 "Advances in Learning Algorithms― Neural Computing and Applications, 2013, 22, 1259-1260.	3.2	0
71	HEALPIX DCT technique for compressing PCA-based illumination adjustable images. Neural Computing and Applications, 2013, 22, 1291-1300.	3.2	3
72	PSO-based K-Means clustering with enhanced cluster matching for gene expression data. Neural Computing and Applications, 2013, 22, 1349-1355.	3.2	32

#	Article	IF	Citations
73	Effect of Input Noise and Output Node Stochastic on Wang's k WTA. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24, 1472-1478.	7.2	11
74	Example-Based Color Transfer for Gradient Meshes. IEEE Transactions on Multimedia, 2013, 15, 549-560.	5.2	19
75	GPU Accelerated Spherical K-Means Training. Lecture Notes in Computer Science, 2013, , 392-399.	1.0	2
76	Concentric Spherical Representation for Omnidirectional Soft Shadow. Computer Graphics Forum, 2013, 32, 201-213.	1.8	3
77	Enhanced GPU Accelerated K-Means Algorithm for Gene Clustering Based on a Merging Thread Strategy. Lecture Notes in Computer Science, 2013, , 713-720.	1.0	1
78	Convergence Analyses on On-Line Weight Noise Injection-Based Training Algorithms for MLPs. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 1827-1840.	7.2	27
79	Decouple implementation of weight decay for recursive least square. Neural Computing and Applications, 2012, 21, 1709-1716.	3.2	1
80	Optimization of tuning parameters for open node fault regularizer. Neurocomputing, 2012, 94, 32-45.	3.5	0
81	RBF Networks Under the Concurrent Fault Situation. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 1148-1155.	7.2	18
82	Self-organizing map-based color palette for high-dynamic range texture compression. Neural Computing and Applications, 2012, 21, 639-647.	3.2	22
83	Editorial for special issue on ICONIP2010 "applications of neural information processing― Neural Computing and Applications, 2012, 21, 611-612.	3.2	0
84	On-Line Node Fault Injection Training Algorithm for MLP Networks: Objective Function and Convergence Analysis. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 211-222.	7.2	18
85	Analysis on the Convergence Time of Dual Neural Network-Based <formula formulatype="inline"><tex notation="TeX">\$k{m WTA}\$</tex></formula> . IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 676-682.	7.2	26
86	A Graphics Processing Unit Accelerated Genetic Algorithm for Affine Invariant Matching of Broken Contours. Journal of Signal Processing Systems, 2012, 66, 105-111.	1.4	2
87	Analog Neural Network Approach for Source Localization Using Time-of-Arrival Measurements. Lecture Notes in Computer Science, 2012, , 234-241.	1.0	0
88	On the Objective Function and Learning Algorithm for Concurrent Open Node Fault. Lecture Notes in Computer Science, 2012, , 208-216.	1.0	1
89	Fast Affine Invariant Shape Matching from 3D Images Based on the Distance Association Map and the Genetic Algorithm. Lecture Notes in Computer Science, 2012, , 204-211.	1.0	0
90	Objective Functions of Online Weight Noise Injection Training Algorithms for MLPs. IEEE Transactions on Neural Networks, 2011, 22, 317-323.	4.8	18

#	Article	IF	CITATIONS
91	Spatiotemporal Sampling of Dynamic Environment Sequences. IEEE Transactions on Visualization and Computer Graphics, 2011, 17, 1499-1509.	2.9	10
92	Unicube for Dynamic Environment Mapping. IEEE Transactions on Visualization and Computer Graphics, 2011, 17, 51-63.	2.9	11
93	The effect of weight fault on associative networks. Neural Computing and Applications, 2011, 20, 113-121.	3.2	6
94	A GPU implementation for LBG and SOM training. Neural Computing and Applications, 2011, 20, 1035-1042.	3.2	13
95	Special issue on ICONIP2009 "Learning algorithm and mathematic modeling― Neurocomputing, 2011, 74, 1915.	3.5	0
96	Regularizers for fault tolerant multilayer feedforward networks. Neurocomputing, 2011, 74, 2028-2040.	3.5	8
97	Training RBF network to tolerate single node fault. Neurocomputing, 2011, 74, 1046-1052.	3.5	6
98	Improved Gene Clustering Based on Particle Swarm Optimization, K-Means, and Cluster Matching. Lecture Notes in Computer Science, 2011, , 654-661.	1.0	3
99	Regularizer for Co-existing of Open Weight Fault and Multiplicative Weight Noise. Lecture Notes in Computer Science, 2011, , 276-283.	1.0	2
100	Analysis on Wang's kWTA with Stochastic Output Nodes. Lecture Notes in Computer Science, 2011, , 268-275.	1.0	4
101	Comparison between the Applications of Fragment-Based and Vertex-Based GPU Approaches in K-Means Clustering of Time Series Gene Expression Data. Lecture Notes in Computer Science, 2011, , 662-667.	1.0	0
102	Recovery of Sparse Signal from an Analog Network Model. Lecture Notes in Computer Science, 2011, , 373-380.	1.0	0
103	Uniformly sampling multi-resolution analysis for image-based relighting. Journal of Visual Communication and Image Representation, 2010, 21, 693-706.	1.7	O
104	Kernel Width Optimization for Faulty RBF Neural Networks with Multi-node Open Fault. Neural Processing Letters, 2010, 32, 97-107.	2.0	5
105	Convergence Analysis of Multiplicative Weight Noise Injection During Training. , 2010, , .		1
106	Scalar Quantizers with Uniform Encoders and Channel-Optimized Decoders for M-PSK Schemes. , 2010, , .		3
107	On the Selection of Weight Decay Parameter for Faulty Networks. IEEE Transactions on Neural Networks, 2010, 21, 1232-1244.	4.8	35
108	All-Frequency Lighting with Multiscale Spherical Radial Basis Functions. IEEE Transactions on Visualization and Computer Graphics, 2010, 16, 43-56.	2.9	12

#	Article	IF	CITATIONS
109	Evolving Mazes from Images. IEEE Transactions on Visualization and Computer Graphics, 2010, 16, 287-297.	2.9	13
110	Convergence and Objective Functions of Some Fault/Noise-Injection-Based Online Learning Algorithms for RBF Networks. IEEE Transactions on Neural Networks, 2010, 21, 938-947.	4.8	52
111	Convergence Analysis of Node Fault Injection During Training. , 2010, , .		0
112	Lagrange Programming Neural Networks for Compressive Sampling. Lecture Notes in Computer Science, 2010, , 177-184.	1.0	3
113	Generalization Error of Faulty MLPs with Weight Decay Regularizer. Lecture Notes in Computer Science, 2010, , 160-167.	1.0	2
114	On Objective Function, Regularizer, and Prediction Error of a Learning Algorithm for Dealing With Multiplicative Weight Noise. IEEE Transactions on Neural Networks, 2009, 20, 124-138.	4.8	35
115	The Rhombic Dodecahedron Map: An Efficient Scheme for Encoding Panoramic Video. IEEE Transactions on Multimedia, 2009, 11 , 634 - 644 .	5 . 2	62
116	Efficient Relighting of RBF-Based Illumination Adjustable Images. IEEE Transactions on Neural Networks, 2009, 20, 1987-1993.	4.8	3
117	On Weight-Noise-Injection Training. Lecture Notes in Computer Science, 2009, , 919-926.	1.0	14
118	Decoding Ambisonic Signals to Irregular Loudspeaker Configuration Based on Artificial Neural Networks. Lecture Notes in Computer Science, 2009, , 273-280.	1.0	2
119	Analysis on Generalization Error of Faulty RBF Networks with Weight Decay Regularizer. Lecture Notes in Computer Science, 2009, , 316-323.	1.0	2
120	On Node-Fault-Injection Training of an RBF Network. Lecture Notes in Computer Science, 2009, , 324-331.	1.0	3
121	Fault Tolerant Regularizers for Multilayer Feedforward Networks. Lecture Notes in Computer Science, 2009, , 277-284.	1.0	1
122	Parallelization of cellular neural networks on GPU. Pattern Recognition, 2008, 41, 2684-2692.	5.1	76
123	A GPU favor representation method for plenoptic-illumination function based on an efficient spherical partition scheme. Signal Processing: Image Communication, 2008, 23, 624-636.	1.8	0
124	Prediction error of a fault tolerant neural network. Neurocomputing, 2008, 72, 653-658.	3.5	7
125	Intrinsic colorization. ACM Transactions on Graphics, 2008, 27, 1-9.	4.9	131
126	Animating animal motion from still. ACM Transactions on Graphics, 2008, 27, 1-8.	4.9	38

#	Article	IF	CITATIONS
127	A Fault-Tolerant Regularizer for RBF Networks. IEEE Transactions on Neural Networks, 2008, 19, 493-507.	4.8	55
128	Analysis on a Simulated Model for Gnutell a Topology: Connectedness and Extension. International Journal of Computers and Applications, 2008, 30, 279-288.	0.8	0
129	Analysis on Bidirectional Associative Memories with Multiplicative Weight Noise. Lecture Notes in Computer Science, 2008, , 289-298.	1.0	1
130	Fault tolerant learning using Kullback-Leibler divergence. , 2007, , .		2
131	On Profit Density Based Greedy Algorithm for a Resource Allocation Problem in Web Services. International Journal of Computers and Applications, 2007, 29, 155-163.	0.8	1
132	Isocube: Exploiting the Cubemap Hardware. IEEE Transactions on Visualization and Computer Graphics, 2007, 13, 720-731.	2.9	23
133	Discrete Wavelet Transform on Consumer-Level Graphics Hardware. IEEE Transactions on Multimedia, 2007, 9, 668-673.	5.2	76
134	Noise-proofing the doubly SH-projected coefficients for synthesizing images under environment lighting. Signal Processing: Image Communication, 2007, 22, 466-479.	1.8	1
135	Improved transmission of vector quantized data over noisy channels. Neural Computing and Applications, 2007, 17, 1-9.	3.2	1
136	Editorial for ICONIP 2006. Neural Computing and Applications, 2007, 16, 503-504.	3.2	0
137	The Local True Weight Decay Recursive Least Square Algorithm. Lecture Notes in Computer Science, 2007, , 456-465.	1.0	1
138	An RBF-based compression method for image-based relighting. IEEE Transactions on Image Processing, 2006, 15, 1031-1041.	6.0	32
139	Noise-resistant fitting for spherical harmonics. IEEE Transactions on Visualization and Computer Graphics, 2006, 12, 254-265.	2.9	22
140	GPU-friendly rendering for illumination adjustable images. Signal Processing: Image Communication, 2006, 21, 919-933.	1.8	2
141	Soft-Decoding SOM for VQ Over Wireless Channels. Neural Processing Letters, 2006, 24, 179-192.	2.0	1
142	Combined learning and pruning for recurrent radial basis function networks based on recursive least square algorithms. Neural Computing and Applications, 2006, 15, 62-78.	3.2	18
143	A Novel Adaptive OFDM Receiver with Second Order Polynomial Nyquist Window Function., 2006,,.		2
144	Generalized RLS Approach to the Training of Neural Networks. IEEE Transactions on Neural Networks, 2006, 17, 19-34.	4.8	48

#	Article	IF	Citations
145	Compressing the illumination-adjustable images with principal component analysis. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15, 355-364.	5. 6	23
146	Analysis and Design of an Agent Searching Algorithm for e-Marketplaces. Cluster Computing, 2004, 7, 85-90.	3.5	4
147	Data compression with spherical wavelets and wavelets for the image-based relighting. Computer Vision and Image Understanding, 2004, 96, 327-344.	3.0	10
148	Eigen-image based compression for the image-based relighting with cascade recursive least squared networks. Pattern Recognition, 2004, 37, 1219-1231.	5.1	5
149	Data compression on the illumination adjustable images by PCA and ICA. Signal Processing: Image Communication, 2004, 19, 939-954.	1.8	14
150	A compression method for a massive image data set in image-based rendering. Signal Processing: Image Communication, 2004, 19, 741-754.	1.8	8
151	Modified LMMSE Turbo Equalization. IEEE Communications Letters, 2004, 8, 174-176.	2.5	22
152	Analysis on Extended Ant Routing Algorithms for Network Routing and Management. Journal of Supercomputing, 2003, 24, 327-340.	2.4	4
153	Dual extended Kalman filtering in recurrent neural networks. Neural Networks, 2003, 16, 223-239.	3.3	70
154	An improved sequential method for principal component analysis. Pattern Recognition Letters, 2003, 24, 1409-1415.	2.6	15
155	An improved optimal bit allocation method for sub-band coding. Pattern Recognition Letters, 2003, 24, 3007-3013.	2.6	4
156	Compression of illumination-adjustable images. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13, 1107-1118.	5.6	18
157	Analysis on a mobile agent-based algorithm for network routing and management. IEEE Transactions on Parallel and Distributed Systems, 2003, 14, 193-202.	4.0	16
158	A LOCAL TRAINING-PRUNING APPROACH FOR RECURRENT NEURAL NETWORKS. International Journal of Neural Systems, 2003, 13, 25-38.	3.2	4
159	PCA-based compression for image-based relighting. , 2003, , .		1
160	The plenoptic illumination function. IEEE Transactions on Multimedia, 2002, 4, 361-371.	5.2	43
161	TTCM schemes based on time-varying trellis approach. Electronics Letters, 2002, 38, 1694.	0.5	0
162	Two regularizers for recursive least squared algorithms in feedforward multilayered neural networks. IEEE Transactions on Neural Networks, 2001, 12, 1314-1332.	4.8	50

#	Article	IF	CITATIONS
163	A pruning method for the recursive least squared algorithm. Neural Networks, 2001, 14, 147-174.	3.3	58
164	Hopf bifurcation and chaos in a single delayed neuron equation with non-monotonic activation function. Chaos, Solitons and Fractals, 2001, 12, 1535-1547.	2.5	111
165	Adaptive training and pruning in feedforward networks. Electronics Letters, 2001, 37, 106.	0.5	1
166	A LOCAL TRAINING AND PRUNING APPROACH FOR NEURAL NETWORKS. International Journal of Neural Systems, 2000, 10, 425-438.	3.2	4
167	Analysis for a class of winner-take-all model. IEEE Transactions on Neural Networks, 1999, 10, 64-71.	4.8	53
168	Design of trellis coded vector quantizers using Kohonen maps. Neural Networks, 1999, 12, 907-914.	3.3	6
169	On the regularization of forgetting recursive least square. IEEE Transactions on Neural Networks, 1999, 10, 1482-1486.	4.8	29
170	On the Kalman filtering method in neural network training and pruning. IEEE Transactions on Neural Networks, 1999, 10, 161-166.	4.8	64
171	An error control scheme for transmission of vector quantization data over noisy channels. IEEE Transactions on Signal Processing, 1998, 46, 2767-2780.	3.2	2
172	Yet another algorithm which can generate topography map. IEEE Transactions on Neural Networks, 1997, 8, 1204-1207.	4.8	25
173	Transmission of vector quantized data over a noisy channel. IEEE Transactions on Neural Networks, 1997, 8, 582-589.	4.8	14
174	Stability and statistical properties of second-order bidirectional associative memory. IEEE Transactions on Neural Networks, 1997, 8, 267-277.	4.8	19
175	On-line training and pruning for recursive least square algorithms. Electronics Letters, 1996, 32, 2152.	0.5	43
176	Stability, capacity, and statistical dynamics of second-order bidirectional associative memory. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25, 1414-1424.	0.9	15
177	Optimum learning for bidirectional associative memory in the sense of capacity. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24, 791-796.	0.9	25
178	On the error sensitivity measure for pruning RBF networks. , 0, , .		2
179	Handwritten digit recognition using trace neural network with EKF training algorithm. , 0, , .		0
180	Soft-decoding for self-organized map. , 0, , .		0

#	Article	IF	CITATIONS
181	Handwritten digit recognition using multilayer feedforward neural networks with periodic and monotonic activation functions. , 0, , .		8
182	Data compression for a massive image data set in IBMR. , 0, , .		0
183	A Novel Synchronization Scheme for OFDM Over Fading Channels. , 0, , .		O
184	Mean square error analysis of RLS algorithm for WSSUS fading channels. , 0, , .		1
185	Convergence analysis on the deterministic mini-batch learning algorithm for noise resilient radial basis function networks. International Journal of Machine Learning and Cybernetics, $0,1.$	2.3	0