Marco Mandolini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7642116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A design for disassembly tool oriented to mechatronic product de-manufacturing and recycling. Advanced Engineering Informatics, 2019, 39, 62-79.	8.0	71
2	Applying data mining technique to disassembly sequence planning: a method to assess effective disassembly time of industrial products. International Journal of Production Research, 2019, 57, 599-623.	7.5	64
3	Time-based disassembly method: how to assess the best disassembly sequence and time of target components in complex products. International Journal of Advanced Manufacturing Technology, 2018, 95, 409-430.	3.0	60
4	A design for EoL approach and metrics to favour closed-loop scenarios for products. International Journal of Sustainable Engineering, 2017, 10, 136-146.	3.5	47
5	Design for Manufacturing and Assembly vs. Design to Cost: Toward a Multi-objective Approach for Decision-making Strategies During Conceptual Design of Complex Products. Procedia CIRP, 2016, 50, 275-280.	1.9	41
6	Ex vivo encapsulation of dexamethasone sodium phosphate into human autologous erythrocytes using fully automated biomedical equipment. International Journal of Pharmaceutics, 2017, 517, 175-184.	5.2	32
7	Elaboration of a Reliable Strategy Based on Real-Time PCR To Characterize Genetically Modified Plantlets and To Evaluate the Efficiency of a Marker Gene Removal in Grape (<i>Vitis</i> spp.). Journal of Agricultural and Food Chemistry, 2009, 57, 2668-2677.	5.2	30
8	Implementation of a software platform to support an eco-design methodology within a manufacturing firm. International Journal of Sustainable Engineering, 2018, 11, 79-96.	3.5	28
9	A System to Increase the Sustainability and Traceability of Supply Chains. Procedia CIRP, 2015, 29, 227-232.	1.9	27
10	Development of complex products and production strategies using a multi-objective conceptual design approach. International Journal of Advanced Manufacturing Technology, 2018, 95, 1281-1291.	3.0	26
11	CAD tools for designing shoe lasts for people with diabetes. CAD Computer Aided Design, 2013, 45, 977-990.	2.7	24
12	A Multi-objective Design Approach to Include Material, Manufacturing and Assembly Costs in the Early Design Phase. Procedia CIRP, 2016, 52, 251-256.	1.9	24
13	A Method for the Estimation of the Economic and Ecological Sustainability of Production Lines. Procedia CIRP, 2014, 15, 147-152.	1.9	22
14	Life Cycle Model and Metrics in Shipbuilding: How to Use them in the Preliminary Design Phases. Procedia CIRP, 2018, 69, 523-528.	1.9	22
15	A standard data model for life cycle analysis of industrial products: A support for eco-design initiatives. Computers in Industry, 2019, 109, 31-44.	9.9	21
16	Includes Knowledge of Dismantling Centers in the Early Design Phase: A Knowledge-based Design for Disassembly Approach. Procedia CIRP, 2016, 48, 401-406.	1.9	20
17	An Approach to Analytically Evaluate the Product Disassemblability during the Design Process. Procedia CIRP, 2014, 21, 336-341.	1.9	19
18	A multi-objective sequential method for manufacturing cost and structural optimization of modular steel towers. Engineering With Computers, 2020, 36, 475-497.	6.1	18

#	Article	IF	CITATIONS
19	A framework for analytical cost estimation of mechanical components based on manufacturing knowledge representation. International Journal of Advanced Manufacturing Technology, 2020, 107, 1131-1151.	3.0	18
20	Analytical Cost Estimation Model in High Pressure Die Casting. Procedia Manufacturing, 2017, 11, 526-535.	1.9	17
21	Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework. Applied Energy, 2022, 312, 118671.	10.1	17
22	Comparison of Three 3D Segmentation Software Tools for Hip Surgical Planning. Sensors, 2022, 22, 5242.	3.8	17
23	PLANTLCA: A Lifecycle Approach to Map and Characterize Resource Consumptions and Environmental Impacts of Manufacturing Plants. Procedia CIRP, 2016, 48, 146-151.	1.9	14
24	Shoes Customization Design Tools for the "Diabetic Foot― Computer-Aided Design and Applications, 2011, 8, 693-711.	0.6	14
25	A Collaborative End of Life platform to Favour the Reuse of Electronic Components. Procedia CIRP, 2017, 61, 166-171.	1.9	13
26	A collaborative web-based platform for the prescription of Custom-Made Insoles. Advanced Engineering Informatics, 2017, 33, 360-373.	8.0	12
27	CAD-integrated design for manufacturing and assembly in mechanical design. International Journal of Computer Integrated Manufacturing, 2022, 35, 282-325.	4.6	11
28	Life Cycle Assessment of Home Smart Objects: Kitchen Hood Cases. Procedia CIRP, 2018, 69, 499-504.	1.9	10
29	A Procedure for Designing Custom-Made Implants for Forehead Augmentation in People Suffering from Apert Syndrome. Journal of Medical Systems, 2020, 44, 146.	3.6	10
30	A Procedure for Analyzing Mandible Roto-Translation Induced by Mandibular Advancement Devices. Materials, 2020, 13, 1826.	2.9	10
31	Metal Additive Manufacturing for the Rapid Prototyping of Shaped Parts: A Case Study. Computer-Aided Design and Applications, 2021, 18, 1061-1079.	0.6	10
32	A CAD-based design for manufacturing method for casted components. Procedia CIRP, 2021, 100, 235-240.	1.9	10
33	Strength distribution on TMJ using mandibular advancement device for OSAS treatment: a finite element study. Dental Cadmos, 2018, 86, 757.	0.1	10
34	Engineering knowledge formalization and proposition for informatics development towards a CAD-integrated DfX system for product design. Advanced Engineering Informatics, 2022, 51, 101537.	8.0	10
35	Selective laser sintered mould for orbital cavity reconstruction. Rapid Prototyping Journal, 2019, 25, 95-103.	3.2	9
36	Integrated Software Platform for Green Engineering Design and Product Sustainability. , 2013, , 87-92.		9

Integrated Software Platform for Green Engineering Design and Product Sustainability. , 2013, , 87-92. 36

Marco Mandolini

#	Article	IF	CITATIONS
37	A knowledge-based workflow to dynamically manage human interaction in extended enterprise. International Journal on Interactive Design and Manufacturing, 2011, 5, 1-15.	2.2	8
38	Platform to support dynamic collaborative design processes in virtual enterprises. International Journal of Computer Integrated Manufacturing, 2013, 26, 1003-1020.	4.6	8
39	Using design geometrical features to develop an analytical cost estimation method for axisymmetric components in open-die forging. Procedia CIRP, 2019, 84, 656-661.	1.9	8
40	How to Support Mechanical Product Cost Estimation in the Embodiment Design Phase. Advanced Concurrent Engineering, 2010, , 465-477.	0.2	7
41	Towards a design-to-sustainability platform based on functional representations and simplified geometric layouts. Computer-Aided Design and Applications, 2017, 14, 301-312.	0.6	7
42	A data framework for environmental assessment of metal arc welding processes and welded structures during the design phase. International Journal of Advanced Manufacturing Technology, 2019, 105, 967-993.	3.0	7
43	A finite element analysis for evaluating mandibular advancement devices. Journal of Biomechanics, 2021, 119, 110298.	2.1	7
44	LeanDfd: A Design for Disassembly Approach to Evaluate the Feasibility of Different End-of-Life Scenarios for Industrial Products. , 2012, , 215-220.		7
45	Promoting and Managing End-of-Life Closed-Loop Scenarios of Products Using a Design for Disassembly Evaluation Tool. , 2012, , .		6
46	Preliminary simulation model toward the study of the effects caused by different mandibular advancement devices in OSAS treatment. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 693-702.	1.6	6
47	Big data analysis for the estimation of disassembly time and de-manufacturing activity. Procedia CIRP, 2020, 90, 617-622.	1.9	6
48	Comparison of the Effects Caused by Three Different Mandibular Advancement Devices on the Periodontal Ligaments and Teeth for the Treatment of Osa: A Finite Element Model Study. Applied Sciences (Switzerland), 2020, 10, 6932.	2.5	6
49	Collaborative Design System for Supporting Dynamic Virtual Enterprises. International Federation for Information Processing, 2010, , 577-584.	0.4	6
50	A TCO Model for Supporting the Configuration of Industrial Plants. Procedia Manufacturing, 2017, 11, 1940-1949.	1.9	5
51	A method for the cost optimization of industrial electrical routings. Computer-Aided Design and Applications, 2018, 15, 747-756.	0.6	5
52	An analytical cost estimation model for the design of axisymmetric components with open-die forging technology. International Journal of Advanced Manufacturing Technology, 2020, 110, 1869-1892.	3.0	5
53	Identification of Weld Beads in Assemblies of B-Rep Models. Computer-Aided Design and Applications, 2014, 11, 263-274.	0.6	4
54	A CAD Tool to Design Bespoke Insoles for Severe Orthopaedic Treatments. Computer-Aided Design and Applications, 2015, 12, 700-709.	0.6	4

#	Article	IF	CITATIONS
55	A CAD-based method for multi-objectives optimization of mechanical products. Computer-Aided Design and Applications, 2017, 14, 563-571.	0.6	4
56	Using engineering documentation to create a data framework for life cycle inventory of welded structures. Procedia CIRP, 2019, 80, 358-363.	1.9	4
57	Key features and novel trends for developing cost engineering methods for forged components: a systematic literature review. International Journal of Advanced Manufacturing Technology, 2021, 117, 2601-2625.	3.0	4
58	Tools for design and validation of shoe lasts for diabetic patients. Footwear Science, 2012, 4, 221-241.	2.1	3
59	Disassembly Knowledge Classification and Potential Application: A Preliminary Analysis on a Washing Machine. , 2016, , .		3
60	Analysis of the Requirements of an Early Life-cycle Cost Estimation Tool: An Industrial Survey. Procedia Manufacturing, 2017, 11, 1675-1683.	1.9	3
61	Orbital Wall Reconstruction by Selective Laser Sintered Mould. , 2017, , .		3
62	Tool for Life Cycle Costing of Electric Motors during the Early Design Phases. , 2014, , 431-436.		3
63	A Methodology and a Software Platform to Implement an Eco-Design Strategy in a Manufacturing Company. , 2013, , .		3
64	HoloLens 2 for Maxillofacial Surgery: A Preliminary Study. Lecture Notes in Mechanical Engineering, 2022, , 133-140.	0.4	3
65	Automation of flexible components virtual prototyping: methodology, tools and validation. Journal of Design Research, 2010, 8, 272.	0.1	2
66	Supporting virtual teamwork in Collaborative Product Development. International Journal of Product Development, 2011, 15, 90.	0.2	2
67	Product Innovations and Eco-Sustainability: An Approach to Evaluate the Relationships. Key Engineering Materials, 2013, 572, 74-77.	0.4	2
68	A Scalable "Design for Costing―Platform: A Practical Case in Ball Valves Industry. Procedia CIRP, 2016, 50, 311-317.	1.9	2
69	A Software Tool for the Analysis and Management of Resource Consumptions and Environmental Impacts of Manufacturing Plants. Procedia CIRP, 2017, 61, 341-346.	1.9	2
70	Environmental Sustainability Awareness in Product Design Practices: A Survey of Italian Companies. , 2017, , .		2
71	A dependencies satisfaction tool to support the cost oriented configuration of industrial products in the conceptual design stage. Computer-Aided Design and Applications, 2018, 15, 819-830.	0.6	2
72	Design of a Custom-Made Cranial Implant in Patients Suffering from Apert Syndrome. Proceedings of the Design Society International Conference on Engineering Design, 2019, 1, 709-718.	0.6	2

#	Article	IF	CITATIONS
73	A should costing approach for manufacturing companies. International Journal of Agile Systems and Management, 2019, 12, 382.	0.3	2
74	AN ANALYTICAL COST MODEL FOR INVESTMENT CASTING. Proceedings of the Design Society DESIGN Conference, 2020, 1, 987-996.	0.8	2
75	Designing die inserts by additive approach: a test case. Procedia CIRP, 2021, 100, 702-707.	1.9	2
76	Cost and Temperature Homogeneity Optimization of the Heating System for Composite Materials Air Press Molding. Computer-Aided Design and Applications, 2019, 16, 1084-1097.	0.6	2
77	UN MÉTODO DE ANÃLISIS JERÃRQUICO PARA ANTICIPAR LA SELECCIÓN DE LA ESTRATEGIA DE APROVISIONAMIENTO EN LA FASE DE DISEÑO. Dyna (Spain), 2019, 94, 161-167.	0.2	2
78	Environmental and Economic Evaluation of the Sheet Metal Stamping Process Using Alternative Lubricants. , 2019, , .		2
79	Manufacturing Processes Re-Engineering for Cost Reduction: The Investment Casting Case Study. , 2019, , .		2
80	Design Optimization: Tools and Methods for ETO Products. Lecture Notes in Mechanical Engineering, 2020, , 516-527.	0.4	2
81	Design for Additive Manufacturing: A Framework to Collect and Reuse Engineering Knowledge Towards a CAD-Based Tool. , 2021, , .		2
82	Eco-Design Platform Within an Extended Enterprise: How to Implement It?. , 2014, , .		1
83	An approach to foster eco-design in 'traditional' companies without eco-knowledge. International Journal of Productivity and Quality Management, 2016, 18, 150.	0.2	1
84	Methodology for evaluating effects of mandibular advancement devices in treating OSAS. International Journal on Interactive Design and Manufacturing, 2021, 15, 91-94.	2.2	1
85	PARAMETRIC COST MODELLING OF COMPONENTS FOR TURBOMACHINES: PRELIMINARY STUDY. Proceedings of the Design Society, 2021, 1, 2379-2388.	0.8	1
86	Parametric Cost Modelling for Investment Casting. Lecture Notes in Mechanical Engineering, 2021, , 386-392.	0.4	1
87	End-of-Life Indices to Manage the Demanufacturing Phase during the Product Design Process. , 2014, , 339-344.		1
88	An Analytical Cost Estimation Approach for Generic Sheet Metal 3D Models. Computer-Aided Design and Applications, 2019, 16, 936-950.	0.6	1
89	A CAD-based Method for Multi-objectives Optimization of Mechanical Products. , 0, , .		1
90	A Design-to-sustainability Platform based on Functional Representations and Simplified Geometric Layouts. , 0, , .		1

#	Article	IF	CITATIONS
91	Periodontal effects of two Somnodent oral devices for the treatment of OSA: A finite element study. Cranio - Journal of Craniomandibular Practice, 2021, , 1-11.	1.4	1
92	Design Optimization of Customizable Centrifugal Industrial Blowers for Gas Turbine Power Plants. , 0, , .		1
93	A should costing approach for manufacturing companies. International Journal of Agile Systems and Management, 2019, 12, 382.	0.3	1
94	Design Optimization of Customizable Centrifugal Industrial Blowers for Gas Turbine Power Plants. Computer-Aided Design and Applications, 2019, 16, 1098-1111.	0.6	1
95	Multiperspective Ergonomic Assessment Approach for Human Centered Workplace Design. Lecture Notes in Mechanical Engineering, 2020, , 675-685.	0.4	1
96	A Knowledge Formalization Approach for Manufacturing Cost Estimation. Lecture Notes in Mechanical Engineering, 2020, , 279-290.	0.4	1
97	Usability Demonstration of the G.EN.ESI Eco-Design Platform: The Cooker Hood Case Study. , 2015, , .		Ο
98	A Method to Assess the Environmental Profile of In-House Machining Processes. , 2016, , .		0
99	A Multi-Objective and Multi-Level Design Optimization Method for Oil and Gas Ducts. , 2017, , .		Ο
100	Evaluation of the Effects Caused by Mandibular Advancement Devices Using a Numerical Simulation Model. Lecture Notes in Mechanical Engineering, 2021, , 101-107.	0.4	0
101	Design for Manufacturing and Assembly: A Method for Rules Classification. Lecture Notes in Mechanical Engineering, 2021, , 354-359.	0.4	Ο
102	Preliminary Considerations on the Design of Multi-layered Bone Scaffold for Laser-Based Printing. Lecture Notes in Electrical Engineering, 2022, , 195-204.	0.4	0
103	Automatic Geometric Recognition of Weld Beads for Supporting Virtual Prototyping and Cost Estimation of Welding. , 2012, , .		0
104	A CAD Tool to Design Bespoke Insoles for Severe Orthopedic Treatments. , 0, , .		0
105	A knowledge-based Tool to Support the Design-to-cost Configuration of Industrial Products from Conceptual Design Stages. , 0, , .		0
106	A Method for the Cost Optimization of Industrial Electrical Routings. , 0, , .		0
107	A KNOWLEDGE-BASED AND MULTI-USER PLATFORM FOR PRESCRIBING CUSTOM-MADE INSOLES. , 0, , .		0
108	Cost and Thermo-Structural Optimization of a Mold Used for Manufacturing CFRP Components with an Out-Of-Autoclave Process. , 0, , .		0

7

#	Article	IF	CITATIONS
109	An Analytical Cost Estimation Approach for Generic Sheet Metal 3D Models. , 0, , .		Ο
110	SIMULACIONES CFD (COMPUTATIONAL FLUID DYNAMICS) DE CÂMARAS DE FILTROS PARA TURBINA DE GAS DE CENTRALES EL‰CTRICAS: EVALUACIÓN DE DIFERENCIAS ENTRE MODELOS 2D Y 3D. Dyna (Spain), 2019, 145-149.	940.2	0
111	Smart, Eco-Sustainable and Human-Centered Product Development Processes: 21st Century Manufacturing Industries. , 2019, , 161-175.		0
112	Conceptual Cost Estimation of Multistage Axial Compressor Modules. , 2019, , .		0
113	Metal Additive Manufacturing for the Rapid Prototyping of Shaped Parts: A Case Study. , 0, , .		0
114	A Decision-Making Approach for Procuring Custom-Made Machineries and Components. , 2020, , .		0
115	Assessing 3-D Printing in Hip Replacement Surgical Planning Radiologic Technology, 2022, 93, 246-254.	0.1	0
116	Design for Additive Manufacturing: Methods and Tools. Applied Sciences (Switzerland), 2022, 12, 6548.	2.5	0