Christopher J Fluke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7641469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biophysical Model of Bacterial Cell Interactions with Nanopatterned Cicada Wing Surfaces. Biophysical Journal, 2013, 104, 835-840.	0.5	496
2	The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials, 2010, 31, 3674-3683.	11.4	379
3	Impact of Nanoscale Roughness of Titanium Thin Film Surfaces on Bacterial Retention. Langmuir, 2010, 26, 1973-1982.	3.5	177
4	Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer's disease. Nature Communications, 2019, 10, 4227.	12.8	157
5	The 6dF Galaxy Survey: peculiar velocity field and cosmography. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2677-2697.	4.4	127
6	Effect of ultrafine-grained titanium surfaces on adhesion of bacteria. Applied Microbiology and Biotechnology, 2009, 83, 925-937.	3.6	100
7	Accelerating incoherent dedispersion. Monthly Notices of the Royal Astronomical Society, 2012, 422, 379-392.	4.4	90
8	Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films. Scientific Reports, 2011, 1, 165.	3.3	76
9	Embedding and Publishing Interactive, 3-Dimensional, Scientific Figures in Portable Document Format (PDF) Files. PLoS ONE, 2013, 8, e69446.	2.5	72
10	Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10, e1349.	6.8	68
11	Incorporating interactive three-dimensional graphics in astronomy research papers. New Astronomy, 2008, 13, 599-605.	1.8	65
12	Roughness Parameters for Standard Description of Surface Nanoarchitecture. Scanning, 2012, 34, 257-263.	1.5	65
13	Scientific Visualization in Astronomy: Towards the Petascale Astronomy Era. Publications of the Astronomical Society of Australia, 2011, 28, 150-170.	3.4	51
14	An Advanced, Three-Dimensional Plotting Library for Astronomy. Publications of the Astronomical Society of Australia, 2006, 23, 82-93.	3.4	48
15	Teraflop per second gravitational lensing ray-shooting using graphics processing units. New Astronomy, 2010, 15, 16-23.	1.8	42
16	Computational advances in gravitational microlensing: A comparison of CPU, GPU, and parallel, large data codes. New Astronomy, 2010, 15, 726-734.	1.8	42
17	The influence of nanoscopically thin silver films on bacterial viability and attachment. Applied Microbiology and Biotechnology, 2011, 91, 1149-1157.	3.6	40
18	GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS. Astrophysical Journal, Supplement Series, 2014, 211, 16.	7.7	33

Christopher J Fluke

#	Article	IF	CITATIONS
19	Investigating the geometry of quasars with microlensing. Monthly Notices of the Royal Astronomical Society, 1999, 302, 68-74.	4.4	32
20	Bacterial attachment on sub-nanometrically smooth titanium substrata. Biofouling, 2013, 29, 163-170.	2.2	31
21	Analysing astronomy algorithms for graphics processing units and beyond. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1936-1944.	4.4	30
22	The size of the mid-IR emission region of a quasar inferred from microlensed images of Q2237+0305. Monthly Notices of the Royal Astronomical Society, 2002, 331, 1041-1052.	4.4	28
23	Kinematic modelling of disc galaxies using graphics processing units. Monthly Notices of the Royal Astronomical Society, 2016, 455, 754-784.	4.4	26
24	Astrophysical Supercomputing with GPUs: Critical Decisions for Early Adopters. Publications of the Astronomical Society of Australia, 2011, 28, 15-27.	3.4	25
25	Self-organised nanoarchitecture of titanium surfaces influences the attachment of Staphylococcus aureus and Pseudomonas aeruginosa bacteria. Applied Microbiology and Biotechnology, 2015, 99, 6831-6840.	3.6	22
26	Gravitational lensing with three-dimensional ray tracing☠Monthly Notices of the Royal Astronomical Society, 2012, 420, 155-169.	4.4	21
27	A new parameter space study of cosmological microlensing. Monthly Notices of the Royal Astronomical Society, 2013, 434, 832-847.	4.4	19
28	Tera-scale astronomical data analysis and visualization. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2442-2455.	4.4	18
29	Adventures in the microlensing cloud: Large datasets, eResearch tools, and GPUs. Astronomy and Computing, 2014, 6, 1-18.	1.7	18
30	Shape, shear and flexion: an analytic flexion formalism for realistic mass profiles. Monthly Notices of the Royal Astronomical Society, 2009, 396, 2257-2268.	4.4	17
31	GERLUMPH DATA RELEASE 2:2.5 BILLION SIMULATED MICROLENSING LIGHT CURVES. Astrophysical Journal, Supplement Series, 2015, 217, 23.	7.7	16
32	Interactive visualization of the largest radioastronomy cubes. New Astronomy, 2011, 16, 100-109.	1.8	14
33	The influence of angular momentum and environment on the H <scp>i</scp> gas of late-type galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2516-2529.	4.4	14
34	Shape, shear and flexion - II. Quantifying the flexion formalism for extended sources with the ray-bundle methoda˜ Monthly Notices of the Royal Astronomical Society, 2011, 416, 1616-1628.	4.4	13
35	A Distributed GPU-Based Framework for Real-Time 3D Volume Rendering of Large Astronomical Data Cubes. Publications of the Astronomical Society of Australia, 2012, 29, 340-351.	3.4	11
36	The effect of macromodel uncertainties on microlensing modelling of lensed quasars. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1223-1234.	4.4	11

Christopher J Fluke

#	Article	IF	CITATIONS
37	Large-scale comparative visualisation of sets of multidimensional data. PeerJ Computer Science, 0, 2, e88.	4.5	10
38	Future Directions in Astronomy Visualization. Publications of the Astronomical Society of Australia, 2006, 23, 12-24.	3.4	9
39	Investigating cosmological weak lensing with the ray-bundle method. Monthly Notices of the Royal Astronomical Society, 2002, 331, 180-196.	4.4	7
40	Data compression in the petascale astronomy era: A GERLUMPH case study. Astronomy and Computing, 2015, 12, 200-211.	1.7	7
41	Are Tiled Display Walls Needed for Astronomy?. Publications of the Astronomical Society of Australia, 2014, 31, .	3.4	6
42	Three-dimensional visualization of nanostructured surfaces and bacterial attachment using Autodesk® Maya®. Scientific Reports, 2015, 4, 4228.	3.3	6
43	The first shear measurements from precision weak lensing. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4591-4604.	4.4	6
44	Mid-Infrared Imaging of the Einstein Cross QSO. Publications of the Astronomical Society of Australia, 2001, 18, 166-168.	3.4	5
45	Interchanging Interactive 3D Graphics for Astronomy. Publications of the Astronomical Society of Australia, 2009, 26, 64-74.	3.4	5
46	Collaborative Workspaces to Accelerate Discovery. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	5
47	The Interactive Astronomy Textbook. Astronomy Education Review, 0, 7, 113-125.	0.0	5
48	Visualisation and Analysis Challenges for WALLABY. , 2010, , .		4
49	Understanding the human in the design of cyber-human discovery systems for data-driven astronomy. Astronomy and Computing, 2020, 33, 100423.	1.7	4
50	Astronomy and Computing: A new journal for the astronomical computing community. Astronomy and Computing, 2013, 1, 1-4.	1.7	3
51	Three-dimensional reconstruction of surface nanoarchitecture from two-dimensional datasets. AMB Express, 2014, 4, 3.	3.0	3
52	Collaborative visual analytics of radio surveys in the Big Data era. Proceedings of the International Astronomical Union, 2016, 12, 311-315.	0.0	3
53	Three-dimensional shapelets and an automated classification scheme for dark matter haloes ^{1a~} . Monthly Notices of the Royal Astronomical Society, 2012, 421, 1499-1516.	4.4	2
54	Sports Stars: Analyzing the Performance of Astronomers at Visualization-based Discovery. Publications of the Astronomical Society of the Pacific, 2017, 129, 058009.	3.1	2

#	Article	IF	CITATIONS
55	Evaluating virtual hosted desktops for graphics-intensive astronomy. Astronomy and Computing, 2018, 23, 124-140.	1.7	2
56	Shape noise and dispersion in precision weak lensing. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5612-5621.	4.4	2
57	Real-time Visualisation and Analysis of Tera-scale Datasets. Proceedings of the International Astronomical Union, 2012, 10, 679-680.	0.0	0
58	Abstract of: Galileo's Heritage: Astronomers, Artists and <i>Deeper Darker Brighter</i> . Leonardo, 0, , 566-566.	0.3	0