
Noelia Barreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7641456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automatic Retinal Vascularity Identification and Artery/Vein Classification Using Near-Infrared Reflectance Retinographies. Communications in Computer and Information Science, 2019, , 262-278.	0.4	1
2	Retinal Vasculature Identification and Characterization Using OCT Imaging. , 2018, , .		1
3	Hydra, a Computer-Based Platform for Aiding Clinicians in Cardiovascular Analysis and Diagnosis. Journal of Visualized Experiments, 2018, , .	0.2	Ο
4	Automatic Characterization of Epiretinal Membrane in OCT Images with Supervised Training. Proceedings (mdpi), 2018, 2, 1161.	0.2	0
5	Automatic System for the Identification and Visualization of the Retinal Vessel Tree Using OCT Imaging. Proceedings (mdpi), 2018, 2, .	0.2	0
6	Machine Learning Applied to Optometry Data. Intelligent Systems Reference Library, 2018, , 123-160.	1.0	5
7	Interactive Three-Dimensional Visualization System of the Vascular Structure in OCT Retinal Images. Lecture Notes in Computer Science, 2018, , 306-313.	1.0	1
8	Enhanced visualization of the retinal vasculature using depth information in OCT. Medical and Biological Engineering and Computing, 2017, 55, 2209-2225.	1.6	25
9	On the analysis of local and global features for hyperemia grading. Proceedings of SPIE, 2017, , .	0.8	1
10	Wivern: a Web-Based System Enabling Computer-Aided Diagnosis and Interdisciplinary Expert Collaboration for Vascular Research. Journal of Medical and Biological Engineering, 2017, 37, 920-935.	1.0	13
11	Hydra: A web-based system for cardiovascular analysis, diagnosis and treatment. Computer Methods and Programs in Biomedicine, 2017, 139, 61-81.	2.6	27
12	Artery/vein Classification of Blood Vessel Tree in Retinal Imaging. , 2017, , .		2
13	Defining the Optimal Region of Interest for Hyperemia Grading in the Bulbar Conjunctiva. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-9.	0.7	9
14	Interobserver variability of an open-source software for tear meniscus height measurement. Contact Lens and Anterior Eye, 2016, 39, 249-256.	0.8	12
15	iDEAS: A web-based system for dry eye assessment. Computer Methods and Programs in Biomedicine, 2016, 130, 186-197.	2.6	13
16	Vessel Tree Extraction and Depth Estimation with OCT Images. Lecture Notes in Computer Science, 2016, , 23-33.	1.0	3
17	"White Coat―Effect Study as a Subclinical Target Organ Damage by Means of a Web Platform. Smart Innovation, Systems and Technologies, 2016, , 279-287.	0.5	0
18	Computational approach for tear film assessment based on break-up dynamics. Biosystems Engineering, 2015, 138, 90-103.	1.9	5

NOELIA BARREIRA

#	Article	IF	CITATIONS
19	Automatic grading system for human tear films. Pattern Analysis and Applications, 2015, 18, 677-694.	3.1	9
20	Automatic identification of vessel crossovers in retinal images. Proceedings of SPIE, 2015, , .	0.8	1
21	On the Automation of the Tear Film Non-invasive Break-up Test. , 2014, , .		5
22	Analysis of parameters for the automatic computation of the tear film break-up time test based on CCLRU standards. Computer Methods and Programs in Biomedicine, 2014, 113, 715-724.	2.6	20
23	Automatic Segmentation of the Mandible in Cone-Beam Computer Tomography Images. , 2014, , .		4
24	Improving retinal artery and vein classification by means of a minimal path approach. Machine Vision and Applications, 2013, 24, 919-930.	1.7	67
25	Reliable monitoring system for arteriovenous ratio computation. Computerized Medical Imaging and Graphics, 2013, 37, 337-345.	3.5	3
26	Automatic classification of the interferential tear film lipid layer using colour texture analysis. Computer Methods and Programs in Biomedicine, 2013, 111, 93-103.	2.6	19
27	On the use of a minimal path approach for target trajectory analysis. Pattern Recognition, 2013, 46, 2015-2027.	5.1	7
28	Evaluation of SIRIUS retinal vessel width measurement in REVIEW dataset. , 2013, , .		8
29	Break-Up Analysis of the Tear Film Based on Time, Location, Size and Shape of the Rupture Area. Lecture Notes in Computer Science, 2013, , 695-702.	1.0	4
30	Computational Approach for Measuring the Tear Film Break-Up Time in an Unsupervised Manner. Communications in Computer and Information Science, 2013, , 254-267.	0.4	4
31	Precise Segmentation of the Optic Disc in Retinal Fundus Images. Lecture Notes in Computer Science, 2012, , 584-591.	1.0	12
32	Topological Active Volume 3D segmentation model optimized with genetic approaches. Natural Computing, 2012, 11, 161-174.	1.8	4
33	Automatic Arteriovenous Ratio Computation: Emulating the Experts. International Federation for Information Processing, 2012, , 563-570.	0.4	6
34	The Significance of the Vessel Registration for a Reliable Computation of Arteriovenous Ratio. Lecture Notes in Computer Science, 2012, , 347-354.	1.0	0
35	Objective categorization of interferential tear film lipid layer pattern: validation of the technique. , 2011, , .		0
36	Automation of the tear film break-up time test. , 2011, , .		8

Automation of the tear film break-up time test. , 2011, , . 36

NOELIA BARREIRA

#	Article	IF	CITATIONS
37	Algorithm for registration of full Scanning Laser Ophthalmoscope video sequences. Computer Methods and Programs in Biomedicine, 2011, 102, 1-16.	2.6	4
38	Texture and Color Analysis for the Automatic Classification of the Eye Lipid Layer. Lecture Notes in Computer Science, 2011, , 66-73.	1.0	11
39	Improvements in retinal vessel clustering techniques: towards the automatic computation of the arterio venous ratio. Computing (Vienna/New York), 2010, 90, 197-217.	3.2	18
40	Sirius: A web-based system for retinal image analysis. International Journal of Medical Informatics, 2010, 79, 722-732.	1.6	47
41	Topological active volumes: A topology-adaptive deformable model for volume segmentation. Pattern Recognition, 2010, 43, 255-266.	5.1	5
42	Directional Gaze Analysis in Webcam Video Sequences. Lecture Notes in Computer Science, 2010, , 316-324.	1.0	2
43	Using Retinex Image Enhancement to Improve the Artery/Vein Classification in Retinal Images. Lecture Notes in Computer Science, 2010, , 50-59.	1.0	18
44	Personal verification based on extraction and characterisation of retinal feature points. Journal of Visual Languages and Computing, 2009, 20, 80-90.	1.8	49
45	Genetic approaches for topological active nets optimization. Pattern Recognition, 2009, 42, 907-917.	5.1	72
46	Retinal Verification Using a Feature Points-Based Biometric Pattern. Eurasip Journal on Advances in Signal Processing, 2009, 2009, .	1.0	67
47	Automatic Drusen Detection from Digital Retinal Images: AMD Prevention. Lecture Notes in Computer Science, 2009, , 187-194.	1.0	5
48	Handling Topological Changes in the Topological Active Volumes Model. Lecture Notes in Computer Science, 2008, , 122-131.	1.0	3
49	Comparison of alternative frameworks for directional primitive extraction. Pattern Recognition and Image Analysis, 2007, 17, 439-449.	0.6	Ο
50	Genetic-Greedy Hybrid Approach for Topological Active Nets Optimization. Lecture Notes in Computer Science, 2007, , 202-210.	1.0	2
51	Efficient Combination of the Fuzzy Hough Transform and the Burns Segment Detector. Lecture Notes in Computer Science, 2007, , 733-739.	1.0	Ο
52	Topological Active Volumes. Eurasip Journal on Advances in Signal Processing, 2005, 2005, 1.	1.0	5
53	Conversion into Three-Dimensional Implicit Surface Representation from Topological Active Volumes Based Segmentation. Lecture Notes in Computer Science, 2005, , 60-68.	1.0	Ο
54	Topological active volume 3D segmentation model optimized with genetic approaches. Natural Computing, 0, , 1.	1.8	0