
Shanteri Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7641086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Current Opinion in Biotechnology, 2011, 22, 800-808.	6.6	136
2	Facile Chemoenzymatic Strategies for the Synthesis and Utilization of <i>S</i> â€Adenosylâ€ <scp>L</scp> â€Methionine Analogues. Angewandte Chemie - International Edition, 2014, 53, 3965-3969.	13.8	120
3	Solution structure of a late embryogenesis abundant protein (LEA14) fromArabidopsis thaliana, a cellular stress-related protein. Protein Science, 2005, 14, 2601-2609.	7.6	104
4	The structural biology of enzymes involved in natural product glycosylation. Natural Product Reports, 2012, 29, 1201.	10.3	99
5	Auto-induction medium for the production of [U-15N]- and [U-13C, U-15N]-labeled proteins for NMR screening and structure determination. Protein Expression and Purification, 2005, 40, 268-278.	1.3	91
6	The structure of flavinâ€dependent tryptophan 7â€halogenase RebH. Proteins: Structure, Function and Bioinformatics, 2008, 70, 289-293.	2.6	89
7	Broadening the scope of glycosyltransferase-catalyzed sugar nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7648-7653.	7.1	88
8	Structure and Mechanism of the Rebeccamycin Sugar 4′-O-Methyltransferase RebM. Journal of Biological Chemistry, 2008, 283, 22628-22636.	3.4	57
9	Comparison of cell-based and cell-free protocols for producing target proteins from the Arabidopsis thaliana genome for structural studies. Proteins: Structure, Function and Bioinformatics, 2005, 59, 633-643.	2.6	56
10	Biochemical and Structural Insights of the Early Glycosylation Steps in Calicheamicin Biosynthesis. Chemistry and Biology, 2008, 15, 842-853.	6.0	51
11	Structure and specificity of a permissive bacterial C-prenyltransferase. Nature Chemical Biology, 2017, 13, 366-368.	8.0	50
12	Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17649-17654.	7.1	47
13	Understanding molecular recognition of promiscuity of thermophilic methionine adenosyltransferase s <scp>MAT</scp> from <i>SulfolobusÂsolfataricus</i> . FEBS Journal, 2014, 281, 4224-4239.	4.7	36
14	Functional AdoMet Isosteres Resistant to Classical AdoMet Degradation Pathways. ACS Chemical Biology, 2016, 11, 2484-2491.	3.4	36
15	Structural Insight into the Self-Sacrifice Mechanism of Enediyne Resistance. ACS Chemical Biology, 2006, 1, 451-460.	3.4	34
16	Venturicidin C, a new 20-membered macrolide produced by Streptomyces sp. TS-2-2. Journal of Antibiotics, 2014, 67, 223-230.	2.0	33
17	Structural characterization of CalO2: A putative orsellinic acid P450 oxidase in the calicheamicin biosynthetic pathway. Proteins: Structure, Function and Bioinformatics, 2009, 74, 50-60.	2.6	27
18	Structural characterization of the mitomycin 7â€ <i>O</i> â€methyltransferase. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2181-2188.	2.6	26

SHANTERI SINGH

#	Article	IF	CITATIONS
19	Crystal structure of SsfS6, the putative <i>C</i> â€glycosyltransferase involved in SF2575 biosynthesis. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1277-1282.	2.6	24
20	Structure-Guided Functional Characterization of Enediyne Self-Sacrifice Resistance Proteins, CalU16 and CalU19. ACS Chemical Biology, 2014, 9, 2347-2358.	3.4	24
21	Functionalized Anodic Aluminum Oxide Membrane–Electrode System for Enzyme Immobilization. ACS Nano, 2014, 8, 8104-8112.	14.6	22
22	Structural Polymorphism and Dynamism in the DNA Segment GATCTTCCCCCCGGAA:  NMR Investigations of Hairpin, Dumbbell, Nicked Duplex, Parallel Strands, and i-Motif. Biochemistry, 1997, 36, 13214-13222.	2.5	21
23	Three-dimensional structure of the AAH26994.1 protein fromMus musculus, a putative eukaryotic Urm1. Protein Science, 2005, 14, 2095-2102.	7.6	21
24	Chemoenzymatic synthesis of daptomycin analogs active against daptomycin-resistant strains. Applied Microbiology and Biotechnology, 2020, 104, 7853-7865.	3.6	20
25	FgaPT2, a biocatalytic tool for alkyl-diversification of indole natural products. MedChemComm, 2019, 10, 1465-1475.	3.4	19
26	A Simple Strategy for Glycosyltransferase atalyzed Aminosugar Nucleotide Synthesis. ChemBioChem, 2014, 15, 647-651.	2.6	18
27	Determination of Alkylâ€Donor Promiscuity of Tyrosineâ€ <i>O</i> â€Prenyltransferase SirD from <i>Leptosphaeria maculans</i> . ChemBioChem, 2017, 18, 2323-2327.	2.6	18
28	The native production of the sesquiterpene isopterocarpolone by <i>Streptomyces</i> sp. RM-14-6. Natural Product Research, 2014, 28, 337-339.	1.8	17
29	Rapid Transport of Protons across Membranes by Aliphatic Amines and Acids. The Journal of Physical Chemistry, 1995, 99, 11302-11305.	2.9	16
30	Structural characterization of CalO1: a putative orsellinic acid methyltransferase in the calicheamicin-biosynthetic pathway. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 197-203.	2.5	16
31	Acceptor substrate determines donor specificity of an aromatic prenyltransferase: expanding the biocatalytic potential of NphB. Applied Microbiology and Biotechnology, 2020, 104, 4383-4395.	3.6	14
32	Structure of Arabidopsis thaliana At1g77540 Protein, a Minimal Acetyltransferase from the COG2388 Family,. Biochemistry, 2006, 45, 14325-14336.	2.5	13
33	Structural and Functional Characterization of CalS11, a TDP-Rhamnose 3â€2- <i>O</i> -Methyltransferase Involved in Calicheamicin Biosynthesis. ACS Chemical Biology, 2013, 8, 1632-1639.	3.4	12
34	Structural Basis for the Stereochemical Control of Amine Installation in Nucleotide Sugar Aminotransferases. ACS Chemical Biology, 2015, 10, 2048-2056.	3.4	12
35	Glycosyloxyamine Neoglycosylation: A Model Study Using Calicheamicin. ChemMedChem, 2011, 6, 774-776.	3.2	11
36	Characterization of the Calicheamicin Orsellinate C2â€∢i>Oâ€Methyltransferase CalO6. ChemBioChem, 2014, 15, 1418-1421.	2.6	10

SHANTERI SINGH

#	Article	IF	CITATIONS
37	Structural characterization of AtmS13, a putative sugar aminotransferase involved in indolocarbazole AT2433 aminopentose biosynthesis. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1547-1554.	2.6	10
38	A General NMR-Based Strategy for the in Situ Characterization of Sugar-Nucleotide-Dependent Biosynthetic Pathways. Organic Letters, 2014, 16, 3220-3223.	4.6	9
39	Indole C6 Functionalization of Tryprostatin B Using Prenyltransferase CdpNPT. Catalysts, 2020, 10, 1247.	3.5	9
40	Novel Homologs of Isopentenyl Phosphate Kinase Reveal Classâ€Wide Substrate Flexibility. ChemCatChem, 2021, 13, 3781-3788.	3.7	8
41	Characterization of Early Enzymes Involved in TDPâ€Aminodideoxypentose Biosynthesis en Route to Indolocarbazole AT2433. ChemBioChem, 2015, 16, 2141-2146.	2.6	6
42	Structural Characterization of CalS8, a TDP-α-d-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis. Journal of Biological Chemistry, 2015, 290, 26249-26258.	3.4	5
43	Loop dynamics of thymidine diphosphate-rhamnose 3′-O-methyltransferase (CalS11), an enzyme in calicheamicin biosynthesis. Structural Dynamics, 2016, 3, 012004.	2.3	5
44	Structural dynamics of a methionine \hat{l}^3 -lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate. Structural Dynamics, 2016, 3, 034702.	2.3	4
45	Evidence for a novel β-bend structure with prolines at the corner:1H and13C NMR study of cyclo(Pro-Pro-Gly)2. Magnetic Resonance in Chemistry, 1993, 31, 944-953.	1.9	3
46	Molecular Basis for the Substrate Promiscuity of Isopentenyl Phosphate Kinase from <i>Candidatus methanomethylophilus alvus</i> . ACS Chemical Biology, 2022, 17, 85-102.	3.4	2