Masatomo Sumiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7641036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€pressure MOCVD growth of InGaN thick films toward the photovoltaic applications. Fundamental Research, 2023, 3, 403-408.	1.6	3
2	Naphthobispyrazine Bisimide: A Strong Acceptor Unit for Conjugated Polymers Enabling Highly Coplanar Backbone, Short π–π Stacking, and High Electron Transport. Chemistry of Materials, 2022, 34, 2717-2729.	3.2	15
3	High reactivity of H ₂ O vapor on GaN surfaces. Science and Technology of Advanced Materials, 2022, 23, 189-198.	2.8	4
4	Insight into traps at Al2O3/p-GaN metal-oxide-semiconductor interface fabricated on free-standing GaN substrate. Journal of Alloys and Compounds, 2021, 853, 157356.	2.8	9
5	Passivation of Bulk and Interface Defects in Sputtered-NiO _{<i>x</i>} -Based Planar Perovskite Solar Cells: A Facile Interfacial Engineering Strategy with Alkali Metal Halide Salts. ACS Applied Energy Materials, 2021, 4, 4530-4540.	2.5	25
6	Growth of AlxGa1-xN/InyGa1-yN hetero structure on AlN/sapphire templates exhibiting Shubnikov-de Haas oscillation. Journal of Crystal Growth, 2021, 574, 126324.	0.7	0
7	Extended π-Electron Delocalization in Quinoid-Based Conjugated Polymers Boosts Intrachain Charge Carrier Transport. Chemistry of Materials, 2021, 33, 8183-8193.	3.2	17
8	Polarization-induced hole doping for long-wavelength In-rich InGaN solar cells. Applied Physics Letters, 2021, 119, .	1.5	6
9	Growth of AlGaN/InGaN/GaN Heterostructure on AlN Template/Sapphire. Physica Status Solidi (B): Basic Research, 2020, 257, 1900524.	0.7	3
10	Influence of thin MOCVD-grown GaN layer on underlying AlN template. Journal of Crystal Growth, 2020, 532, 125376.	0.7	9
11	Effective silicon production from SiCl ₄ source using hydrogen radicals generated and transported at atmospheric pressure. Science and Technology of Advanced Materials, 2020, 21, 482-491.	2.8	5
12	Dynamic Observation and Theoretical Analysis of Initial O ₂ Molecule Adsorption on Polar and <i>m</i> -Plane Surfaces of GaN. Journal of Physical Chemistry C, 2020, 124, 25282-25290.	1.5	10
13	Layered boron nitride enabling high-performance AlGaN/GaN high electron mobility transistor. Journal of Alloys and Compounds, 2020, 829, 154542.	2.8	19
14	Vertical-Type Ni/GaN UV Photodetectors Fabricated on Free-Standing GaN Substrates. Applied Sciences (Switzerland), 2019, 9, 2895.	1.3	18
15	Boosting the doping efficiency of Mg in <i>p</i> -GaN grown on the free-standing GaN substrates. Applied Physics Letters, 2019, 115, .	1.5	22
16	Growth of InGaN films on hardness-controlled bulk GaN substrates. Applied Physics Letters, 2019, 115, 172102.	1.5	1
17	Structural disorder and in-gap states of Mg-implanted GaN films evaluated by photothermal deflection spectroscopy. Journal of Crystal Growth, 2019, 511, 15-18.	0.7	10
18	Terahertz Cyclotron Resonance in AlGaN/GaN Heterostructures. Journal of the Korean Physical Society, 2019, 74, 159-163.	0.3	1

#	Article	IF	CITATIONS
19	Nearâ€Surface [Ga]/([In]+[Ga]) Composition in Cu(In,Ga)Se 2 Thinâ€Film Solar Cell Absorbers: An Overlooked Material Feature. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800856.	0.8	6
20	MOCVD Growth and Investigation of InGaN/GaN Heterostructure Grown on AlGaN/GaN-on-Si Template. Applied Sciences (Switzerland), 2019, 9, 1746.	1.3	4
21	Perovskite Solar Cells with >19% Efficiency Achieved by an Advanced Three-Step Method Using Additional HC(NH ₂) ₂ l–Nal Spin-Coating. ACS Applied Energy Materials, 2019, 2, 1823-1831.	2.5	7
22	High-quality SiN _{<i>x</i>} / <i>p</i> -GaN metal-insulator-semiconductor interface with low-density trap states. Journal Physics D: Applied Physics, 2019, 52, 085105.	1.3	9
23	Valence band edge tail states and band gap defect levels of GaN bulk and In <i>_x</i> Ga _{1â^'} <i>_x</i> N films detected by hard X-ray photoemission and photothermal deflection spectroscopy. Applied Physics Express, 2018, 11, 021002.	1.1	17
24	Vacancy-type defects in Al2O3/GaN structure probed by monoenergetic positron beams. Journal of Applied Physics, 2018, 123, .	1.1	21
25	Suppression in the electrical hysteresis by using CaF2 dielectric layer for p-GaN MIS capacitors. Journal of Applied Physics, 2018, 123, .	1.1	17
26	Density evaluation of remotely-supplied hydrogen radicals produced via tungsten filament method for SiCl4 reduction. Japanese Journal of Applied Physics, 2018, 57, 051301.	0.8	1
27	Perovskite Solar Cells Prepared by Advanced Three-Step Method Using Additional HC(NH ₂) ₂ I Spin-Coating: Efficiency Improvement with Multiple Bandgap Structure. ACS Applied Energy Materials, 2018, 1, 1389-1394.	2.5	7
28	Determination of the transition point from electron accumulation to depletion at the surface of In <i>_x</i> Ga _{1â^'} <i>_x</i> N films. Applied Physics Express, 2018, 11, 021001.	1.1	3
29	Structural evaluation of ions-implanted GaN films by photothermal deflection spectroscopy. AIP Advances, 2018, 8, .	0.6	15
30	Interface trap characterization of Al2O3/GaN vertical-type MOS capacitors on GaN substrate with surface treatments. Journal of Alloys and Compounds, 2018, 767, 600-605.	2.8	26
31	Fabrication of three-dimensional CuInS 2 solar-cell structure via supercritical fluid processing. Journal of Supercritical Fluids, 2017, 120, 448-452.	1.6	5
32	Nearly ideal vertical GaN Schottky barrier diodes with ultralow turn-on voltage and on-resistance. Applied Physics Express, 2017, 10, 051001.	1.1	36
33	Deep-level defects related to the emissive pits in thick InGaN films on GaN template and bulk substrates. APL Materials, 2017, 5, .	2.2	14
34	Electron capture by vacancy-type defects in carbon-doped GaN studied using monoenergetic positron beams. Thin Solid Films, 2017, 639, 78-83.	0.8	11
35	Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes. Applied Physics Letters, 2017, 111, .	1.5	55
36	Vacancy-type defects in bulk GaN grown by the Na-flux method probed using positron annihilation. Journal of Crystal Growth, 2017, 475, 261-265.	0.7	15

#	Article	IF	CITATIONS
37	Fabrication of Cu2ZnSnS4 thin films using a Cu-Zn-Sn-O amorphous precursor and supercritical fluid sulfurization. Thin Solid Films, 2017, 638, 244-250.	0.8	1
38	Investigation on the interfacial chemical state and band alignment for the sputtering-deposited CaF2/ <i>p</i> -GaN heterojunction by angle-resolved X-ray photoelectron spectroscopy. Journal of Applied Physics, 2016, 120, .	1.1	7
39	Preparation of Si nano-crystals with controlled oxidation state from SiO disproportionated by ZrO ₂ ball-milling. Japanese Journal of Applied Physics, 2016, 55, 090304.	0.8	2
40	Electrical hysteresis in p-GaN metal–oxide–semiconductor capacitor with atomic-layer-deposited Al ₂ O ₃ as gate dielectric. Applied Physics Express, 2016, 9, 121002.	1.1	19
41	P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas. Scientific Reports, 2016, 6, 23683.	1.6	37
42	Influence of dislocations on indium diffusion in semi-polar InGaN/GaN heterostructures. AIP Advances, 2015, 5, .	0.6	4
43	Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells. Scientific Reports, 2015, 5, 14386.	1.6	10
44	Optical properties of Ga _{0.82} In _{0.18} N <i>p</i> - <i>n</i> homojunction blue-green light-emitting-diode grown by radio-frequency plasma-assisted molecular beam epitaxy. Transactions of the Materials Research Society of Japan, 2015, 40, 149-152.	0.2	0
45	Improvement of strained InGaN solar cell performance with a heavily doped n ⁺ â€GaN substrate. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1033-1038.	0.8	9
46	Cathodoluminescence study of optical properties along the growth direction of ZnO films on GaN substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1129-1131.	0.8	1
47	InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties. Journal of Applied Physics, 2015, 117, .	1.1	26
48	Deep-level defects and turn-on capacitance recovery characteristics in AlGaN/GaN heterostructures. Philosophical Magazine Letters, 2015, 95, 333-339.	0.5	1
49	Direct Carbothermic Silica Reduction from Purified Silica to Solar-Grade Silicon. Journal of Physics: Conference Series, 2015, 596, 012015.	0.3	8
50	A Multilevel Intermediateâ€Band Solar Cell by InGaN/GaN Quantum Dots with a Strainâ€Modulated Structure. Advanced Materials, 2014, 26, 1414-1420.	11.1	40
51	Optically active vacancies in GaN grown on Si substrates probed using a monoenergetic positron beam. Applied Physics Letters, 2014, 104, 082110.	1.5	22
52	Carbon-Related Deep-Level Defects and Turn-On Recovery Characteristics in AlGaN/GaN Hetero-Structures. Materials Research Society Symposia Proceedings, 2014, 1635, 109-114.	0.1	0
53	Electrical Characterization of Thick InGaN Films for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2014, 1635, 29-34.	0.1	0
54	Native and process induced defects in GaN films grown on Si substrates probed using a monoenergetic positron beam. , 2014, , .		0

ΜΑSΑΤΟΜΟ SUMIYA

#	Article	IF	CITATIONS
55	Vacancy clusters introduced by CF ₄ -based plasma treatment in GaN probed with a monoenergetic positron beam. Applied Physics Express, 2014, 7, 121001.	1.1	5
56	Annealing behaviors of vacancy-type defects near interfaces between metal contacts and GaN probed using a monoenergetic positron beam. Applied Physics Letters, 2014, 105, 052108.	1.5	11
57	(Invited) Point Defect Characterization of Group-III Nitrides by Using Monoenergetic Positron Beams. ECS Transactions, 2014, 61, 19-30.	0.3	14
58	Defects in nitride-based semiconductors probed by positron annihilation. Journal of Physics: Conference Series, 2014, 505, 012009.	0.3	1
59	Fabrication of transparent conducting polymer/GaN Schottky junction for deep level defect evaluation under light irradiation. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 470-473.	0.8	8
60	p-Type a-Si:H/ZnO:Al and μc-Si:H/ZnO:Al Thin-Film Solar Cell Structures—A Comparative Hard X-Ray Photoelectron Spectroscopy Study. IEEE Journal of Photovoltaics, 2013, 3, 483-487.	1.5	4
61	Effect of polarization on intersubband transition in AlGaN/GaN multiple quantum wells. Applied Physics Letters, 2013, 102, .	1.5	13
62	Vacancy-type defects in In <i>x</i> Ga1â^' <i>x</i> N grown on GaN templates probed using monoenergetic positron beams. Journal of Applied Physics, 2013, 114, .	1.1	15
63	A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures. Sensors, 2013, 13, 10482-10518.	2.1	675
64	Determination of the surface band bending in In _{<i>x</i>} Ga _{1â^'<i>x</i>} N films by hard x-ray photoemission spectroscopy. Science and Technology of Advanced Materials, 2013, 14, 015007.	2.8	11
65	Point defects introduced by InN alloying into InxGa1â^xN probed using a monoenergetic positron beam. Journal of Applied Physics, 2013, 113, 123502.	1.1	7
66	The silicon/zinc oxide interface in amorphous silicon-based thin-film solar cells: Understanding an empirically optimized contact. Applied Physics Letters, 2013, 103, .	1.5	12
67	Double-Polarity Selective Area Growth of GaN Metal Organic Vapor Phase Epitaxy by Using Carbon Mask Layers. Japanese Journal of Applied Physics, 2013, 52, 08JB26.	0.8	8
68	Temperature and Light Intensity Dependence of Photocurrent Transport Mechanisms in InGaN p–i–n Homojunction Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 08JF04.	0.8	8
69	p-Type a-Si:H/ZnO:Al and µc-Si:H/ZnO:Al thin-film solar cell structures—A comparative hard X-ray photoelectron spectroscopy study. , 2013, , .		1
70	Effect of hydrogen radical on decomposition of chlorosilane source gases. Journal of Physics: Conference Series, 2013, 441, 012003.	0.3	2
71	Vacancy-type defects in In <i>x</i> Ga1– <i>x</i> N alloys probed using a monoenergetic positron beam. Journal of Applied Physics, 2012, 112, .	1.1	20
72	Development of a new laser heating system for thin film growth by chemical vapor deposition. Review of Scientific Instruments, 2012, 83, 094701.	0.6	8

#	Article	IF	CITATIONS
73	Study of Defect Levels in the Band Gap for a Thick InGaN Film. Japanese Journal of Applied Physics, 2012, 51, 121001.	0.8	6
74	Reply to "Comment on `Photovoltaic Action in Polyaniline/n-GaN Schottky Diodes' ― Applied Physics Express, 2012, 5, 029102.	1.1	0
75	InGaN photodiodes using CaF2 insulator for high-temperature UV detection. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 953-956.	0.8	2
76	Study of Defect Levels in the Band Gap for a Thick InGaN Film. Japanese Journal of Applied Physics, 2012, 51, 121001.	0.8	12
77	Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer. Applied Physics Letters, 2011, 99, .	1.5	62
78	High-temperature ultraviolet detection based on InGaN Schottky photodiodes. Applied Physics Letters, 2011, 99, .	1.5	61
79	Modulation of the ferromagnetic insulating phase in Pr _{0.8} Ca _{0.2} MnO ₃ by Co substitution. Physica Status Solidi - Rapid Research Letters, 2011, 5, 34-36.	1.2	7
80	Ï€-Conjugated polymer/GaN Schottky solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 284-287.	3.0	21
81	Communication: The reason why +c ZnO surface is less stable than â^'c ZnO surface: First-principles calculation. Journal of Chemical Physics, 2011, 135, 241103.	1.2	6
82	Photocapacitance spectroscopy study of deep-level defects in freestanding n-GaN substrates using transparent conductive polymer Schottky contacts. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	6
83	Delta-doped epitaxial La:SrTiO3 field-effect transistor. Applied Physics Letters, 2011, 98, 242113.	1.5	6
84	Defects in ZnO transparent conductors studied by capacitance transients at ZnO/Si interface. Applied Physics Letters, 2011, 98, 082101.	1.5	18
85	Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing. Journal of Applied Physics, 2011, 110, 113514.	1.1	32
86	Deep-Level Characterization of Free-Standing HVPE-grown GaN Substrates Using Transparent Conductive Polyaniline Schottky Contacts. Materials Research Society Symposia Proceedings, 2011, 1309, 97.	0.1	0
87	Deep-Level Characterization of n-GaN Epitaxial Layers Using Transparent Conductive Polyaniline Schottky Contacts. Japanese Journal of Applied Physics, 2011, 50, 01AD02.	0.8	7
88	High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator. Applied Physics Letters, 2011, 98, 103502.	1.5	56
89	Deep-Level Characterization of n-GaN Epitaxial Layers Using Transparent Conductive Polyaniline Schottky Contacts. Japanese Journal of Applied Physics, 2011, 50, 01AD02.	0.8	2
90	Growth of MgxZn1â^'xO film by MOCVD equipped laser heating system. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 173, 11-13.	1.7	16

#	Article	IF	CITATIONS
91	Fabrication and hard X-ray photoemission analysis of photocathodes with sharp solar-blind sensitivity using AlGaN films grown on Si substrates. Applied Surface Science, 2010, 256, 4442-4446.	3.1	43
92	Anomalous capacitance–voltage characteristics of Pt–AlGaN/GaN Schottky diodes exposed to hydrogen. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1928-1930.	0.8	9
93	Valence band structure of III-V nitride films characterized by hard X-ray photoelectron spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1903-1905.	0.8	6
94	Electrical characterization of n -GaN epilayers using transparent polyaniline Schottky contacts. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2007-2009.	0.8	4
95	Analysis of polar direction of AlN grown on (0001) sapphire and 6Hâ€SiC substrates by highâ€ŧemperature metalâ€organic vapor phase epitaxy using coaxial impact collision ion scattering spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2365-2367.	0.8	3
96	Phase Separation Resulting from Mg Doping in p-InGaN Film Grown on GaN/Sapphire Template. Applied Physics Express, 2010, 3, 111004.	1.1	29
97	Reduction of nonradiative recombination center for ZnO films grown under Zn-rich conditions by metal organic chemical vapor deposition. Applied Physics Letters, 2010, 97, 131913.	1.5	12
98	HETEROINTERFACE PROPERTIES OF NOVEL HYBRID SOLAR CELLS CONSISTING OF TRANSPARENT CONDUCTIVE POLYMERS AND III-NITRIDE SEMICONDUCTOR. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 703-711.	1.1	5
99	Photovoltaic Action in Polyaniline/n-GaN Schottky Diodes. Applied Physics Express, 2009, 2, 092201.	1.1	18
100	Plasma-surface interactions of advanced photoresists with C4F8â^•Ar discharges: Plasma parameter dependencies. Journal of Vacuum Science & Technology B, 2009, 27, 92-106.	1.3	21
101	Dependence of photoresist surface modifications during plasma-based pattern transfer on choice of feedgas composition: Comparison of C[sub 4]F[sub 8]- and CF[sub 4]-based discharges. Journal of Vacuum Science & Technology B, 2009, 27, 1165.	1.3	14
102	Lateral Polarity Control in GaN Based on Selective Growth Procedure Using Carbon Mask Layers. Applied Physics Express, 2009, 2, 101001.	1.1	10
103	Low-frequency capacitance-voltage study of hydrogen interaction with Pt-AlGaN/GaN Schottky barrier diodes. Physica Status Solidi - Rapid Research Letters, 2009, 3, 266-268.	1.2	6
104	Development of UV-photocathodes using GaN film on Si substrate. Proceedings of SPIE, 2008, , .	0.8	10
105	Photo-catalysis effect of III-V nitride film. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2642-2645.	0.8	0
106	Microfabrication of GaN groove on sapphire substrate treated selectively by electron-beam. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1649-1652.	0.8	2
107	N-polarity GaN on sapphire substrate grown by MOVPE. Physica Status Solidi (B): Basic Research, 2006, 243, 1446-1450.	0.7	58
108	Combinatorial synthesis of Li-doped NiO thin films and their transparent conducting properties. Applied Surface Science, 2006, 252, 2524-2528.	3.1	82

ΜΑSΑΤΟΜΟ SUMIYA

#	Article	IF	CITATIONS
109	Zone center optical phonons in AlxGa1â^'xN mixed crystals. Journal of Applied Physics, 2006, 100, 013508.	1.1	7
110	Effect of treatments of sapphire substrate on growth of GaN film. Applied Surface Science, 2005, 244, 269-272.	3.1	22
111	Reduced Defect Densities in Cubic GaN Epilayers with AlGaN/GaN Superlattice Underlayers Grown on (001) GaAs Substrates by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2004, 43, 958-965.	0.8	6
112	Review of polarity determination and control of GaN. MRS Internet Journal of Nitride Semiconductor Research, 2004, 9, 1.	1.0	108
113	SIMS analysis of ZnO films co-doped with N and Ga by temperature gradient pulsed laser deposition. Applied Surface Science, 2004, 223, 206-209.	3.1	32
114	Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 2004, 4, 42-46.	13.3	1,963
115	Reduction of point defect density in cubic GaN epilayers on (001) GaAs substrates using AlGaN/GaN superlattice underlayers. Journal of Crystal Growth, 2004, 272, 481-488.	0.7	6
116	Combinatorial Scanning Tunneling Microscopy Study of Cr Deposited on Anatase TiO2(001) Surface. Langmuir, 2004, 20, 3018-3020.	1.6	17
117	Donor–acceptor pair luminescence in nitrogen-doped ZnO films grown on lattice-matched ScAlMgO4 (0001) substrates. Solid State Communications, 2003, 127, 265-269.	0.9	97
118	Growth of non-polara-plane III-nitride thin films on Si(100) using non-polar plane buffer layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2520-2524.	0.8	3
119	Systematic analysis and control of low-temperature GaN buffer layers on sapphire substrates. Journal of Applied Physics, 2003, 93, 1311-1319.	1.1	42
120	HNO3 treatment of sapphire for management of GaN polarity in MOCVD method: Comparison of the properties of +c and –c GaN region. Materials Research Society Symposia Proceedings, 2003, 798, 372.	0.1	0
121	Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laser deposition. Journal of Applied Physics, 2003, 93, 2562-2569.	1.1	38
122	Magneto-Optical Spectroscopy of Anatase TiO2Doped with Co. Japanese Journal of Applied Physics, 2003, 42, L105-L107.	0.8	61
123	Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N. Applied Physics Letters, 2002, 81, 235-237.	1.5	96
124	Effect of buffer-layer engineering on the polarity of GaN films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 456-458.	0.9	14
125	Epitaxial Growth of GaN Film on (La,Sr)(Al,Ta)O3(111) Substrate by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2002, 41, 5038-5041.	0.8	19
126	Optimization of Interface and Interphase Systems: The Case of SiC and III-V Nitrides. Materials Science Forum, 2002, 389-393, 733-736.	0.3	0

ΜΑSΑΤΟΜΟ SUMIYA

#	Article	IF	CITATIONS
127	Silicon Carbide Buffer Layers for Nitride Growth on Si. Materials Science Forum, 2002, 389-393, 1485-1488.	0.3	0
128	Physics of Heteroepitaxy and Heterophases. Materials Science Forum, 2002, 389-393, 379-384.	0.3	0
129	CAICISS characterization of GaN films grown by pulsed laser deposition. Journal of Crystal Growth, 2002, 237-239, 1153-1157.	0.7	24
130	Reduction of defect density in GaN epilayer having buried Ga metal by MOCVD. Journal of Crystal Growth, 2002, 237-239, 1060-1064.	0.7	3
131	Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy. Journal of Applied Physics, 2001, 90, 4219-4223.	1.1	301
132	In-Situ Rheed Observation of Mocvd-Gan Film Growth. Materials Research Society Symposia Proceedings, 2001, 693, 792.	0.1	0
133	Co-doping Approach for β-type ZnO with Combinatorial Laser MBE Method. Materials Research Society Symposia Proceedings, 2001, 700, 171.	0.1	1
134	Epitaxial growth of AlN on (La,Sr)(Al,Ta)O3 substrate by laser MBE. Journal of Crystal Growth, 2001, 225, 73-78.	0.7	54
135	RHEED and XPS study of GaN on Si(111) grown by pulsed laser deposition. Journal of Crystal Growth, 2001, 233, 779-784.	0.7	41
136	Impact of growth polar direction on the optical properties of GaN grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2001, 78, 28-30.	1.5	57
137	Study of defects in GaN grown by the two-flow metalorganic chemical vapor deposition technique using monoenergetic positron beams. Journal of Applied Physics, 2001, 90, 181-186.	1.1	92
138	Impact of the Growth Polar Direction on the Optical Properties of Gan Films Grown by Metalorganic Vapor Phase Epitaxy. Materials Research Society Symposia Proceedings, 2000, 639, 1161.	0.1	0
139	Characteristics of the GaN Polar Surface during an Etching Process in KOH Solution. Physica Status Solidi A, 2000, 180, 357-362.	1.7	29
140	Epitaxial growth of ZnO films on lattice-matched ScAlMgO4(0001) substrates. Journal of Crystal Growth, 2000, 214-215, 59-62.	0.7	64
141	Synthesis and antitumor activities of novel 5-deazaflavin-sialic acid conjugate molecules. Bioorganic and Medicinal Chemistry, 2000, 8, 2027-2035.	1.4	17
142	Growth mode and surface morphology of a GaN film deposited along the N-face polar direction on c-plane sapphire substrate. Journal of Applied Physics, 2000, 88, 1158-1165.	1.1	129
143	Structural analysis of InxGa1â~'xN single quantum wells by coaxial-impact collision ion scattering spectroscopy. Applied Physics Letters, 2000, 77, 2512-2514.	1.5	8
144	Dependence of impurity incorporation on the polar direction of GaN film growth. Applied Physics Letters, 2000, 76, 2098-2100.	1.5	153

#	ARTICLE	IF	CITATIONS
145	Characteristics of the GaN Polar Surface during an Etching Process in KOH Solution. , 2000, 180, 357.		1
146	Nitride Semiconductor Surfaces. Characterization of the Polarity of GaN Semiconductor Films by Coaxial Impact Collision Ion Scattering Spectroscopy. Correlation between GaN Growth Process and the Polar Direction Hyomen Kagaku, 2000, 21, 142-147.	0.0	1
147	Control of the Polarity and Surface Morphology of GaN Films Deposited on C-Plane Sapphire. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 634-641.	1.0	3
148	Analysis of the polar direction of GaN film growth by coaxial impact collision ion scattering spectroscopy. Applied Physics Letters, 1999, 75, 674-676.	1.5	110
149	Effect of AlN buffer layer deposition conditions on the properties of GaN layer. Journal of Crystal Growth, 1999, 205, 20-24.	0.7	28
150	Influence of Thermal Annealing on GaN Buffer Layers and the Property of Subsequent GaN Layers Grown by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1999, 38, 649-653.	0.8	64
151	Properties of amorphous carbon films characterized by laser desorption time of flight mass spectroscopy. Journal of Non-Crystalline Solids, 1998, 227-230, 632-635.	1.5	1
152	Characteristics of field effect a-Si:H solar cells. Journal of Non-Crystalline Solids, 1998, 227-230, 1287-1290.	1.5	7
153	Double Heterostructure Based on ZnO and Mg _x Zn _{1-x} O. Materials Science Forum, 1998, 264-268, 1463-0.	0.3	29
154	Control of the Polarity and Surface Morphology of GaN Films Deposited on C-Plane Sapphire. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	1
155	Field effect solar cell. , 1997, , .		0
156	In situ optical diagnosis on hydrogenated amorphous silicon grown by vibration superimposed plasma chemical vapor deposition. Applied Physics Letters, 1995, 66, 1071-1073.	1.5	5
157	Fabrication of Highly Stable and Low Defect Density Amorphous Silicon Films at Low Substrate Temperature by Plasma Chemical Vapor Deposition Assisted with Piezoelectric Vibration. Japanese Journal of Applied Physics, 1995, 34, L97-L100.	0.8	3
158	Piezoelectric Effect on Plasma Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films. Materials Research Society Symposia Proceedings, 1993, 297, 139.	0.1	3
159	Continuous production of a-Si:H/a-SiN:H superlattice by pulsed plasma and photo CVD. Journal of Non-Crystalline Solids, 1991, 137-138, 1127-1130.	1.5	4
160	In situ characterization of growing hydrogenated amorphous silicon thin films by p-polarized laser light reflection measurement. , 0, , .		0
161	Hetero-Epitaxial Growth of ZnO Film by Temperature-Modulated Metalorganic Chemical Vapor Deposition. Applied Physics Express, 0, 2, 045502.	1.1	15