Gabor Worseck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7641023/publications.pdf

Version: 2024-02-01

66 papers 4,449 citations

35 h-index 63 g-index

66 all docs

66
docs citations

66 times ranked 2850 citing authors

#	Article	IF	CITATIONS
1	New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-	1.6	360
2	Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3683-3701.	1.6	240
3	Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy. Nature, 2016, 529, 178-180.	13.7	209
4	The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium (sup) $\hat{a}-\langle sup \rangle$. Astrophysical Journal, 2017, 837, 169.	1.6	203
5	The first ultraviolet quasar-stacked spectrum at z \hat{a} % f 2.4 from WFC3. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4204-4220.	1.6	197
6	Low-redshift Lyman continuum leaking galaxies with high [O iii]/[O ii] ratios. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4851-4865.	1.6	196
7	Lyman- <i>\hat{l}±</i> spectral properties of five newly discovered Lyman continuum emitters. Astronomy and Astrophysics, 2017, 597, A13.	2.1	167
8	J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4514-4527.	1.6	161
9	The Giant Gemini GMOS survey of zem > 4.4 quasars – l. Measuring the mean free path across cosmic time. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1745-1760.	1.6	146
10	A DEFINITIVE SURVEY FOR LYMAN LIMIT SYSTEMS AT z $\hat{a}^{1}/4$ 3.5 WITH THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, 2010, 718, 392-416.	1.6	144
11	Evolution of the AGN UV luminosity function from redshift 7.5. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1035-1065.	1.6	143
12	A refined measurement of the mean transmitted flux in the Lyl $$ t forest over 2 < z < 5 using composite quasar spectra. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2067-2081.	1.6	137
13	The neutral hydrogen cosmological mass density at $\langle i \rangle z \langle i \rangle = 5$. Monthly Notices of the Royal Astronomical Society, 2015, 452, 217-234.	1.6	135
14	A DIRECT MEASUREMENT OF THE INTERGALACTIC MEDIUM OPACITY TO H I IONIZING PHOTONS. Astrophysical Journal, 2009, 705, L113-L117.	1.6	122
15	EARLY AND EXTENDED HELIUM REIONIZATION OVER MORE THAN 600 MILLION YEARS OF COSMIC TIME*. Astrophysical Journal, 2016, 825, 144.	1.6	90
16	THE END OF HELIUM REIONIZATION AT <i>z</i> \hat{a} % f 2.7 INFERRED FROM COSMIC VARIANCE IN <i>HST</i> /COMBAN He II Lyı̂± ABSORPTION SPECTRA. Astrophysical Journal Letters, 2011, 733, L24.	OS _{3.0}	88
17	An unbiased measurement of the UV background and its evolution via the proximity effect in quasar spectra. Astronomy and Astrophysics, 2008, 491, 465-481.	2.1	86
18	DISSECTING THE PROPERTIES OF OPTICALLY THICK HYDROGEN AT THE PEAK OF COSMIC STAR FORMATION HISTORY. Astrophysical Journal, 2013, 775, 78.	1.6	82

#	Article	IF	CITATIONS
19	THE <i>HST</i> /ACS+WFC3 SURVEY FOR LYMAN LIMIT SYSTEMS. II. SCIENCE. Astrophysical Journal, 2013, 765, 137.	1.6	79
20	XQ-100: A legacy survey of one hundred 3.5 $\hat{a}\%^2 < i > z < /i > \hat{a}\%^2 $ 4.5 quasars observed with VLT/X-shooter. Astronomy and Astrophysics, 2016, 594, A91.	2.1	72
21	Lyman continuum leakage from low-mass galaxies with <i>M</i> â<†Â<Â108 M⊙. Monthly Notices Royal Astronomical Society, 2021, 503, 1734-1752.	of the	72
22	<i>GALEX</i> FAR-ULTRAVIOLET COLOR SELECTION OF UV-BRIGHT HIGH-REDSHIFT QUASARS. Astrophysical Journal, 2011, 728, 23.	1.6	71
23	The X-SHOOTER/ALMA Sample of Quasars in the Epoch of Reionization. I. NIR Spectral Modeling, Iron Enrichment, and Broad Emission Line Properties. Astrophysical Journal, 2020, 905, 51.	1.6	66
24	The evolution of neutral gas in damped LymanÂα systems from the XQ-100 survey. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4488-4505.	1.6	64
25	The mean free path of ionizing photons at 5 & amp;lt; <i>z</i> & amp;lt; 6: evidence for rapid evolution near reionization. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1853-1869.	1.6	63
26	The Low-redshift Lyman Continuum Survey. I. New, Diverse Local Lyman Continuum Emitters. Astrophysical Journal, Supplement Series, 2022, 260, 1.	3.0	62
27	The ionizing photon production efficiency of compact < i>z < /i> \sim 0.3 Lyman continuum leakers and comparison with high-redshift galaxies. Astronomy and Astrophysics, 2016, 591, L8.	2.1	60
28	Do galaxies that leak ionizing photons have extreme outflows?. Astronomy and Astrophysics, 2017, 605, A67.	2.1	59
29	The Lyman-alpha forest power spectrum from the XQ-100 Legacy Survey. Monthly Notices of the Royal Astronomical Society, 0, , stw3372.	1.6	48
30	The Low-redshift Lyman Continuum Survey. II. New Insights into LyC Diagnostics. Astrophysical Journal, 2022, 930, 126.	1.6	48
31	The transverse proximity effect in spectral hardness on the line of sight towards HEÂ2347–4342. Astronomy and Astrophysics, 2007, 473, 805-818.	2.1	47
32	Diverse properties of Ly α emission in low-redshift compact star-forming galaxies with extremely high [O ii]/[O ii] ratios. Monthly Notices of the Royal Astronomical Society, 2020, 491, 468-482.	1.6	47
33	Quasars near the line of sight towards QÂ0302-003 andÂtheÂtransverse proximity effect. Astronomy and Astrophysics, 2006, 450, 495-508.	2.1	46
34	The Evolution of O i over 3.2Â<ÂzÂ<Â6.5: Reionization of the Circumgalactic Medium. Astrophysical Journal, 2019, 883, 163.	1.6	45
35	Chemical abundances of the damped Lyman $\hat{l}\pm$ systems in the XQ-100 survey. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3021-3037.	1.6	36
36	Statistical Detection of the He ii Transverse Proximity Effect: Evidence for Sustained Quasar Activity for >25 Million Years. Astrophysical Journal, 2017, 847, 81.	1.6	36

#	Article	IF	Citations
37	THE HE II PROXIMITY EFFECT AND THE LIFETIME OF QUASARS. Astrophysical Journal, 2016, 824, 133.	1.6	32
38	Nature and statistical properties of quasar associated absorption systems in the XQ-100 Legacy Survey. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3285-3301.	1.6	32
39	Strong Lyman continuum emitting galaxies show intense C†IVâ€ <i>i)»</i> i>1550 emission. Astronomy and Astrophysics, 2022, 658, L11.	2.1	32
40	The Evolution of the He ii-ionizing Background at Redshifts 2.3Â<ÂzÂ<Â3.8 Inferred from a Statistical Sample of 24 HST/COS He ii Lyα Absorption Spectra*. Astrophysical Journal, 2019, 875, 111.	1.6	31
41	CONSTRAINING THE LIFETIME AND OPENING ANGLE OF QUASARS USING FLUORESCENT LyαÂEMISSION: THE CASE OF Q0420–388. Astrophysical Journal, 2016, 830, 120.	1.6	27
42	Evidence for short â ¹ / ₄ 1 Myr lifetimes from the HeÂ <scp>ii</scp> proximity zones of <i>z</i> Ââ ¹ / ₄ Â4 quasa Monthly Notices of the Royal Astronomical Society, 2019, 484, 3897-3910.	irs. 1:6	27
43	The Low-Redshift Lyman Continuum Survey. Astronomy and Astrophysics, 2022, 663, A59.	2.1	27
44	Discovery of a dual AGN at $\langle i \rangle z \langle i \rangle$ â‰ f 3.3 with 20 kpc separation. Astronomy and Astrophysics, 2018, 610, L7.	2.1	25
45	The Low-redshift Lyman-continuum Survey: [S ii] Deficiency and the Leakage of Ionizing Radiation. Astrophysical Journal, 2021, 916, 3.	1.6	24
46	Intense Câ€III] <i>λλ</i> 1907,1909 emission from a strong Lyman continuum emitting galaxy. Astronomy and Astrophysics, 2018, 616, L14.	2.1	24
47	Modeling the He ii Transverse Proximity Effect: Constraints on Quasar Lifetime and Obscuration. Astrophysical Journal, 2018, 861, 122.	1.6	23
48	The first measurement of the quasar lifetime distribution. Monthly Notices of the Royal Astronomical Society, 2021, 505, 649-662.	1.6	23
49	The case against large intensity fluctuations in the zÂâ^¼Â2.5 Heè^ii Lyα forest. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2406-2418.	1.6	22
50	The line-of-sight proximity effect in individual quasar spectra. Astronomy and Astrophysics, 2008, 480, 359-368.	2.1	21
51	Sub-damped Lyman α systems in the XQ-100 survey – I. Identification and contribution to the cosmological H i budget. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4356-4369.	1.6	17
52	Tracing Lyl± and LyC Escape in Galaxies with Mg ii Emission. Astrophysical Journal, 2022, 933, 202.	1.6	17
53	On the selection of damped Lyman α systems using Mg <scp>ii</scp> absorption at 2 < <i>z</i> abs < 4. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L56-L60.	1,2	15
54	Dating individual quasars with the He <scp>ii</scp> proximity effect. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5084-5103.	1.6	13

#	Article	IF	CITATIONS
55	Sub-damped Lyman α systems in the XQ-100 survey – II. Chemical evolution at 2.4 ≤i>z ≤.3. Mon Notices of the Royal Astronomical Society, 2021, 502, 4009-4025.	thly 1.6	13
56	Hunting for metals using XQ-100 Legacy Survey composite spectra. Monthly Notices of the Royal Astronomical Society, 2018, 481, 105-121.	1.6	12
57	Imprints of the first billion years: Lyman limit systems at $i \ge z < i \ge \hat{a}^1 / 4 $ 5. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1456-1470.	1.6	12
58	New Evidence for Extended He ii Reionization at z 3% 3.5 from He ii Lyman Alpha and Beta Transmission Spikes*. Astrophysical Journal, 2021, 912, 38.	1.6	12
59	Solving the conundrum of intervening strong Mg II absorbers towards gamma-ray bursts and quasars. Astronomy and Astrophysics, 2017, 608, A84.	2.1	11
60	A slitless spectroscopic survey for quasars near quasars. Astronomy and Astrophysics, 2008, 487, 539-554.	2.1	10
61	No correlation of the Lyman continuum escape fraction with spectral hardness. Astronomy and Astrophysics, 2022, 663, L1.	2.1	10
62	Spectroscopic Redshift of the Gamma-Ray Blazar B2 1215+30 from Lyl $^\pm$ Emission. Astronomical Journal, 2019, 157, 41.	1.9	4
63	Cosmic dance at <i>z</i> Â~Â3: Detecting the host galaxies of the dual AGN system LBQS 0302–0019 and <i>Jil</i> with HAWK-I+GRAAL. Astronomy and Astrophysics, 2018, 614, L2.	2.1	3
64	A meeting at <i>z</i> â ¹ / ₄ 3: Young massive galaxies and an AGN within 30 kpc of the luminous QSO LBQS 0302–0019. Astronomy and Astrophysics, 2021, 653, A122.	2.1	3
65	Statistical Detection of the He ii Transverse Proximity Effect: Evidence for Sustained Quasar Activity for >25 Million Years. Frontiers in Astronomy and Space Sciences, 2017, 4, .	1.1	0
66	He ii Ly $\hat{l}\pm$ Transmission Spikes and Absorption Troughs in Eight High-resolution Spectra Probing the End of He ii Reionization. Astrophysical Journal, 2022, 927, 175.	1.6	0