
## Daniele Antonio Di Pietro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7640799/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mathematical Aspects of Discontinuous Galerkin Methods. Math $	ilde{A}$ ©matiques Et Applications, 2012, , .                                                                                      | 0.6 | 429       |
| 2  | A hybrid high-order locking-free method for linear elasticity on general meshes. Computer Methods in<br>Applied Mechanics and Engineering, 2015, 283, 1-21.                                       | 3.4 | 248       |
| 3  | On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations.<br>Journal of Computational Physics, 2012, 231, 45-65.                                           | 1.9 | 193       |
| 4  | An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on<br>Local Reconstruction Operators. Computational Methods in Applied Mathematics, 2014, 14, 461-472. | 0.4 | 181       |
| 5  | Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM:<br>Mathematical Modelling and Numerical Analysis, 2016, 50, 635-650.                                       | 0.8 | 141       |
| 6  | An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible<br>Navier–Stokes equations. Journal of Computational Physics, 2006, 218, 794-815.                | 1.9 | 130       |
| 7  | Discrete functional analysis tools for Discontinuous Galerkin methods with application to the<br>incompressible Navier–Stokes equations. Mathematics of Computation, 2010, 79, 1303-1330.         | 1.1 | 119       |
| 8  | An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows.<br>Computers and Fluids, 2007, 36, 1529-1546.                                                  | 1.3 | 94        |
| 9  | Hybrid high-order methods for variable-diffusion problems on general meshes. Comptes Rendus<br>Mathematique, 2015, 353, 31-34.                                                                    | 0.1 | 79        |
| 10 | A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. Mathematics of<br>Computation, 2016, 86, 2159-2191.                                                              | 1.1 | 76        |
| 11 | The Hybrid High-Order Method for Polytopal Meshes. Modeling, Simulation and Applications, 2020, , .                                                                                               | 1.3 | 66        |
| 12 | A discontinuous skeletal method for the viscosity-dependent Stokes problem. Computer Methods in<br>Applied Mechanics and Engineering, 2016, 306, 175-195.                                         | 3.4 | 61        |
| 13 | Discontinuous Galerkin Methods for Anisotropic Semidefinite Diffusion with Advection. SIAM Journal on Numerical Analysis, 2008, 46, 805-831.                                                      | 1.1 | 58        |
| 14 | A Discontinuous-Skeletal Method for Advection-Diffusion-Reaction on General Meshes. SIAM Journal on Numerical Analysis, 2015, 53, 2135-2157.                                                      | 1.1 | 58        |
| 15 | A Hybrid High-Order Method for Darcy Flows in Fractured Porous Media. SIAM Journal of Scientific<br>Computing, 2018, 40, A1063-A1094.                                                             | 1.3 | 54        |
| 16 | A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. Journal of Computational Physics, 2011, 230, 572-585.             | 1.9 | 50        |
| 17 | Mass preserving finite element implementations of the level set method. Applied Numerical<br>Mathematics, 2006, 56, 1179-1195.                                                                    | 1.2 | 48        |
| 18 | An extension of the Crouzeix–Raviart space to general meshes with application to<br>quasi-incompressible linear elasticity and Stokes flow. Mathematics of Computation, 2015, 84, 1-31.           | 1.1 | 46        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes. Journal of Computational Physics, 2018, 355, 397-425.                                                                                                                              | 1.9 | 46        |
| 20 | A Nonconforming High-Order Method for the Biot Problem on General Meshes. SIAM Journal of Scientific Computing, 2016, 38, A1508-A1537.                                                                                                                         | 1.3 | 43        |
| 21 | The G method for heterogeneous anisotropic diffusion on general meshes. ESAIM: Mathematical<br>Modelling and Numerical Analysis, 2010, 44, 597-625.                                                                                                            | 0.8 | 41        |
| 22 | A Hybrid High-Order Method for Nonlinear Elasticity. SIAM Journal on Numerical Analysis, 2017, 55, 2687-2717.                                                                                                                                                  | 1.1 | 41        |
| 23 | A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem. Journal of<br>Scientific Computing, 2018, 74, 1677-1705.                                                                                                                       | 1.1 | 41        |
| 24 | Hybridization of Mixed High-Order Methods on General Meshes and Application to the Stokes Equations. Computational Methods in Applied Mathematics, 2015, 15, 111-134.                                                                                          | 0.4 | 35        |
| 25 | Ws,p-approximation properties of elliptic projectors on polynomial spaces, with application to the<br>error analysis of a Hybrid High-Order discretisation of Leray–Lions problems. Mathematical Models<br>and Methods in Applied Sciences, 2017, 27, 879-908. | 1.7 | 33        |
| 26 | Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous<br>Galerkin methods. Journal of Computational Physics, 2018, 370, 58-84.                                                                                            | 1.9 | 33        |
| 27 | Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA<br>Journal of Numerical Analysis, 2017, 37, 40-63.                                                                                                                | 1.5 | 30        |
| 28 | Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. Journal of Computational and Applied Mathematics, 2018, 344, 852-874.                                                                   | 1.1 | 30        |
| 29 | A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits.<br>Computer Methods in Applied Mechanics and Engineering, 2018, 341, 278-310.                                                                                | 3.4 | 29        |
| 30 | Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes. Computer Aided Geometric Design, 2015, 35-36, 27-41.                                                                                             | 0.5 | 28        |
| 31 | A Hybrid High-Order Method for the CahnHilliard problem in Mixed Form. SIAM Journal on Numerical<br>Analysis, 2016, 54, 1873-1898.                                                                                                                             | 1.1 | 26        |
| 32 | Cell centered Galerkin methods for diffusive problems. ESAIM: Mathematical Modelling and Numerical<br>Analysis, 2012, 46, 111-144.                                                                                                                             | 0.8 | 24        |
| 33 | A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media. Journal of Computational Physics, 2014, 276, 163-187.                                                                                | 1.9 | 24        |
| 34 | A Hybrid High-Order method for the incompressible Navier–Stokes equations based on Temam's device.<br>Journal of Computational Physics, 2019, 376, 786-816.                                                                                                    | 1.9 | 24        |
| 35 | An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics. Journal of Computational Physics, 2016, 326, 35-55.                                                                                                                | 1.9 | 23        |
| 36 | A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible<br>heterogeneous media. Applied Numerical Mathematics, 2013, 63, 105-116.                                                                                  | 1.2 | 22        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem. Mathematics of Computation, 2015, 84, 153-186.                                                              | 1.1 | 22        |
| 38 | A third Strang lemma and an Aubin–Nitsche trick for schemes in fully discrete formulation. Calcolo, 2018, 55, 1.                                                                                                                        | 0.6 | 20        |
| 39 | A low-order nonconforming method for linear elasticity on general meshes. Computer Methods in<br>Applied Mechanics and Engineering, 2019, 354, 96-118.                                                                                  | 3.4 | 20        |
| 40 | Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra.<br>Mathematical Models and Methods in Applied Sciences, 2020, 30, 1809-1855.                                                                 | 1.7 | 17        |
| 41 | Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52, 1-28.                                                          | 0.8 | 16        |
| 42 | A Hybrid High-Order method for the incompressible Navier–Stokes problem robust for large<br>irrotational body forces. Computers and Mathematics With Applications, 2020, 79, 2655-2677.                                                 | 1.4 | 16        |
| 43 | A Hybrid High-Order method for Kirchhoff–Love plate bending problems. ESAIM: Mathematical<br>Modelling and Numerical Analysis, 2018, 52, 393-421.                                                                                       | 0.8 | 15        |
| 44 | A Review of Hybrid High-Order Methods: Formulations, Computational Aspects, Comparison with<br>Other Methods. Lecture Notes in Computational Science and Engineering, 2016, , 205-236.                                                  | 0.1 | 14        |
| 45 | A Review of Recent Advances in Discretization Methods, <i>a Posteriori</i> Error Analysis, and Adaptive<br>Algorithms for Numerical Modeling in Geosciences. Oil and Gas Science and Technology, 2014, 69,<br>701-729.                  | 1.4 | 13        |
| 46 | Stress and flux reconstruction in Biot's poro-elasticity problem with application to a posteriori<br>error analysis. Computers and Mathematics With Applications, 2017, 73, 1593-1610.                                                  | 1.4 | 13        |
| 47 | A Hybrid High-Order method for passive transport in fractured porous media. GEM - International<br>Journal on Geomathematics, 2019, 10, 1.                                                                                              | 0.7 | 13        |
| 48 | A Hybrid High-Order Discretization Method for Nonlinear Poroelasticity. Computational Methods in<br>Applied Mathematics, 2020, 20, 227-249.                                                                                             | 0.4 | 12        |
| 49 | An Arbitrary-Order Discrete de Rham Complex on Polyhedral Meshes: Exactness, Poincaré Inequalities, and Consistency. Foundations of Computational Mathematics, 2023, 23, 85-164.                                                        | 1.5 | 12        |
| 50 | Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes.<br>Computer Methods in Applied Mechanics and Engineering, 2022, 397, 115061.                                                           | 3.4 | 12        |
| 51 | An a posteriori-based, fully adaptive algorithm with adaptive stopping criteria and mesh refinement<br>for thermal multiphase compositional flows in porous media. Computers and Mathematics With<br>Applications, 2014, 68, 2331-2347. | 1.4 | 11        |
| 52 | A hybrid high-order method for creeping flows of non-Newtonian fluids. ESAIM: Mathematical<br>Modelling and Numerical Analysis, 2021, 55, 2045-2073.                                                                                    | 0.8 | 11        |
| 53 | Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an artificial compressibility flux. International Journal for Numerical Methods in Fluids, 2007, 55, 793-813.                                         | 0.9 | 10        |
| 54 | An <i>hp</i> -Hybrid High-Order Method for Variable Diffusion on General Meshes. Computational<br>Methods in Applied Mathematics, 2017, 17, 359-376.                                                                                    | 0.4 | 10        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cell centered Galerkin methods. Comptes Rendus Mathematique, 2010, 348, 31-34.                                                                                                                                                                | 0.1 | 9         |
| 56 | Analysis of a discontinuous galerkin method for heterogeneous diffusion problems with<br>Iowâ€regularity solutions. Numerical Methods for Partial Differential Equations, 2012, 28, 1161-1177.                                                | 2.0 | 9         |
| 57 | An arbitrary-order method for magnetostatics on polyhedral meshes based on a discrete de Rham sequence. Journal of Computational Physics, 2021, 429, 109991.                                                                                  | 1.9 | 9         |
| 58 | An abstract analysis framework for monolithic discretisations of poroelasticity with application to<br>Hybrid High-Order methods. Computers and Mathematics With Applications, 2021, 91, 150-175.                                             | 1.4 | 8         |
| 59 | An Advection-Robust Hybrid High-Order Method for the Oseen Problem. Journal of Scientific<br>Computing, 2018, 77, 1310-1338.                                                                                                                  | 1.1 | 7         |
| 60 | An H-Multigrid Method for Hybrid High-Order Discretizations. SIAM Journal of Scientific Computing, 2021, 43, S839-S861.                                                                                                                       | 1.3 | 7         |
| 61 | p-Multilevel Preconditioners for HHO Discretizations of the Stokes Equations with Static<br>Condensation. Communications on Applied Mathematics and Computation, 2022, 4, 783-822.                                                            | 0.7 | 7         |
| 62 | A domain-specific embedded language in C++ for lowest-order discretizations of diffusive problems on general meshes. BIT Numerical Mathematics, 2013, 53, 111-152.                                                                            | 1.0 | 6         |
| 63 | Equilibrated tractions for the Hybrid High-Order method. Comptes Rendus Mathematique, 2015, 353, 279-282.                                                                                                                                     | 0.1 | 6         |
| 64 | Weighted interior penalty discretization of fully nonlinear and weakly dispersive free surface shallow water flows. Journal of Computational Physics, 2018, 355, 285-309.                                                                     | 1.9 | 6         |
| 65 | An Introduction to Hybrid High-Order Methods. SEMA SIMAI Springer Series, 2018, , 75-128.                                                                                                                                                     | 0.4 | 6         |
| 66 | A discrete Weber inequality on three-dimensional hybrid spaces with application to the HHO<br>approximation of magnetostatics. Mathematical Models and Methods in Applied Sciences, 2022, 32,<br>175-207.                                     | 1.7 | 6         |
| 67 | Expression templates implementation of continuous and discontinuous Galerkin methods. Computing and Visualization in Science, 2009, 12, 421-436.                                                                                              | 1.2 | 5         |
| 68 | A compact cell-centered Galerkin method with subgrid stabilization. Comptes Rendus Mathematique,<br>2011, 349, 93-98.                                                                                                                         | 0.1 | 5         |
| 69 | Improved error estimates for Hybrid High-Order discretizations of Leray–Lions problems. Calcolo,<br>2021, 58, 1.                                                                                                                              | 0.6 | 5         |
| 70 | Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and<br>Hybrid High-Order methods. Computer Methods in Applied Mechanics and Engineering, 2020, 361, 112736.                                         | 3.4 | 4         |
| 71 | Towards robust, fast solutions of elliptic equations on complex domains through hybrid highâ€order<br>discretizations and nonâ€nested multigrid methods. International Journal for Numerical Methods in<br>Engineering, 2021, 122, 6576-6595. | 1.5 | 4         |
| 72 | A Hybrid High-Order Method for Multiple-Network Poroelasticity. SEMA SIMAI Springer Series, 2021, , 227-258.                                                                                                                                  | 0.4 | 4         |

## Daniele Antonio Di Pietro

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Benchmark Session: The 2D Hybrid High-Order Method. Springer Proceedings in Mathematics and Statistics, 2017, , 91-106.                                                                       | 0.1 | 4         |
| 74 | Lowest order methods for diffusive problems on general meshes: A unified approach to definition and implementation. Springer Proceedings in Mathematics, 2011, , 803-819.                     | 0.5 | 4         |
| 75 | Basic concepts to design a DSL for parallel finite volume applications. , 2009, , .                                                                                                           |     | 3         |
| 76 | On the conservativity of cell-centered Galerkin methods. Comptes Rendus Mathematique, 2013, 351,<br>155-159.                                                                                  | 0.1 | 3         |
| 77 | An Arbitrary-Order Discontinuous Skeletal Method for Solving Electrostatics on General Polyhedral<br>Meshes. IEEE Transactions on Magnetics, 2017, 53, 1-4.                                   | 1.2 | 3         |
| 78 | Preface: Special Issue on Model Reduction. Journal of Scientific Computing, 2019, 81, 1-2.                                                                                                    | 1.1 | 3         |
| 79 | A Nonconforming High-Order Method forÂNonlinear Poroelasticity. Springer Proceedings in<br>Mathematics and Statistics, 2017, , 537-545.                                                       | 0.1 | 2         |
| 80 | Equilibrated Stress Reconstructions for Linear Elasticity Problems with Application to a Posteriori<br>Error Analysis. Springer Proceedings in Mathematics and Statistics, 2017, , 293-301.   | 0.1 | 2         |
| 81 | A Hybrid High-Order method for incompressible flows of non-Newtonian fluids with power-like convective behaviour. IMA Journal of Numerical Analysis, 2023, 43, 144-186.                       | 1.5 | 2         |
| 82 | A Hybrid High-Order Method forÂtheÂConvective Cahn–Hilliard Problem inÂMixedÂForm. Springer<br>Proceedings in Mathematics and Statistics, 2017, , 517-525.                                    | 0.1 | 1         |
| 83 | A posteriori error estimates via equilibrated stress reconstructions for contact problems<br>approximated by Nitsche's method. Computers and Mathematics With Applications, 2022, 111, 61-80. | 1.4 | 1         |
| 84 | Highâ€order multigrid strategies for hybrid highâ€order discretizations of elliptic equations. Numerical<br>Linear Algebra With Applications, 2023, 30, .                                     | 0.9 | 1         |
| 85 | An arbitrary-order discontinuous skeletal method for solving electrostatics on general polyhedral meshes. , 2016, , .                                                                         |     | Ο         |
| 86 | An Introduction to Recent Developments in Numerical Methods for Partial Differential Equations.<br>SEMA SIMAI Springer Series, 2018, , 1-4.                                                   | 0.4 | 0         |
| 87 | Unsteady First-Order PDEs. Mathématiques Et Applications, 2011, , 67-115.                                                                                                                     | 0.6 | Ο         |
| 88 | Incompressible Flows. Mathématiques Et Applications, 2011, , 241-291.                                                                                                                         | 0.6 | 0         |
| 89 | Linear Elasticity. Modeling, Simulation and Applications, 2020, , 325-379.                                                                                                                    | 1.3 | 0         |
| 90 | Navier–Stokes. Modeling, Simulation and Applications, 2020, , 421-474.                                                                                                                        | 1.3 | 0         |

| #  | Article                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Setting. Modeling, Simulation and Applications, 2020, , 3-44.                                                             | 1.3 | 0         |
| 92 | Basic Principles of Hybrid High-Order Methods: The Poisson Problem. Modeling, Simulation and Applications, 2020, , 45-81. | 1.3 | 0         |
| 93 | Stokes. Modeling, Simulation and Applications, 2020, , 381-420.                                                           | 1.3 | 0         |
| 94 | Complements on Pure Diffusion. Modeling, Simulation and Applications, 2020, , 147-184.                                    | 1.3 | 0         |
| 95 | p-Laplacian and Leray–Lions. Modeling, Simulation and Applications, 2020, , 273-324.                                      | 1.3 | 0         |