Annakaisa Haapasalo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7640524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration—Insights into disease mechanisms and current therapeutic approaches. Molecular Psychiatry, 2022, 27, 1300-1309.	7.9	17
2	S327 phosphorylation of the presynaptic protein SEPTIN5 increases in the early stages of neurofibrillary pathology and alters the functionality of SEPTIN5. Neurobiology of Disease, 2022, 163, 105603.	4.4	4
3	C9orf72 hexanucleotide repeat expansion leads to altered neuronal and dendritic spine morphology and synaptic dysfunction. Neurobiology of Disease, 2022, 162, 105584.	4.4	5
4	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	21.4	700
5	Brainstem atrophy is linked to extrapyramidal symptoms in frontotemporal dementia. Journal of Neurology, 2022, 269, 4488-4497.	3.6	2
6	Modifiable potential risk factors in familial and sporadic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2022, 9, 1195-1205.	3.7	4
7	State-of-the-Art Methods and Emerging Fluid Biomarkers in the Diagnostics of Dementia—A Short Review and Diagnostic Algorithm. Diagnostics, 2021, 11, 788.	2.6	9
8	MECP2 Increases the Pro-Inflammatory Response of Microglial Cells and Phosphorylation at Serine 423 Regulates Neuronal Gene Expression upon Neuroinflammation. Cells, 2021, 10, 860.	4.1	8
9	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	12.8	140
10	GFAP as a biomarker in frontotemporal dementia and primary psychiatric disorders: diagnostic and prognostic performance. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1305-1312.	1.9	25
11	Expression of C9orf72 hexanucleotide repeat expansion leads to formation of RNA foci and dipeptide repeat proteins but does not influence autophagy or proteasomal function in neuronal cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119021.	4.1	5
12	FTLD Patient–Derived Fibroblasts Show Defective Mitochondrial Function and Accumulation of p62. Molecular Neurobiology, 2021, 58, 5438-5458.	4.0	4
13	A Novel Genetic Marker for the C9orf72 Repeat Expansion in the Finnish Population. Journal of Alzheimer's Disease, 2021, 83, 1325-1332.	2.6	6
14	Peripheral inflammatory markers and clinical correlations in patients with frontotemporal lobar degeneration with and without the C9orf72 repeat expansion. Journal of Neurology, 2020, 267, 76-86.	3.6	8
15	Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders. Journal of Neurology, 2020, 267, 162-167.	3.6	70
16	Presynaptic Vesicle Protein SEPTIN5 Regulates the Degradation of APP C-Terminal Fragments and the Levels of Al ² . Cells, 2020, 9, 2482.	4.1	8
17	Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Molecular Neurodegeneration, 2020, 15, 66.	10.8	22
18	BV-2 Microglial Cells Overexpressing C9orf72 Hexanucleotide Repeat Expansion Produce DPR Proteins and Show Normal Functionality but No RNA Foci. Frontiers in Neurology, 2020, 11, 550140.	2.4	4

ANNAKAISA HAAPASALO

#	Article	IF	CITATIONS
19	The Alzheimer's disease-associated protective Plcγ2-P522R variant promotes immune functions. Molecular Neurodegeneration, 2020, 15, 52.	10.8	48
20	Serum neurofilament light chain in FTLD: association with C9orf72, clinical phenotype, and prognosis. Annals of Clinical and Translational Neurology, 2020, 7, 903-910.	3.7	17
21	Comparison of Prodromal Symptoms of Patients with Behavioral Variant Frontotemporal Dementia and Alzheimer Disease. Dementia and Geriatric Cognitive Disorders, 2020, 49, 98-106.	1.5	7
22	Mutation Analysis of the Genes Associated with Parkinson's Disease in a Finnish Cohort of Early-Onset Dementia. Journal of Alzheimer's Disease, 2020, 76, 955-965.	2.6	0
23	Altered Insulin Signaling in Alzheimer's Disease Brain – Special Emphasis on PI3K-Akt Pathway. Frontiers in Neuroscience, 2019, 13, 629.	2.8	235
24	Low Serum High-Density Lipoprotein Cholesterol Levels Associate with the C9orf72 Repeat Expansion in Frontotemporal Lobar Degeneration Patients. Journal of Alzheimer's Disease, 2019, 72, 127-137.	2.6	13
25	C9orf72 Proteins Regulate Autophagy and Undergo Autophagosomal or Proteasomal Degradation in a Cell Type-Dependent Manner. Cells, 2019, 8, 1233.	4.1	19
26	PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports, 2019, 13, 669-683.	4.8	132
27	Prodromal and Early bvFTD: Evaluating Clinical Features and Current Biomarkers. Frontiers in Neuroscience, 2019, 13, 658.	2.8	10
28	Mutation Analysis of the Genes Linked to Early Onset Alzheimer's Disease and Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2019, 69, 775-782.	2.6	7
29	Astrocytes and Microglia as Potential Contributors to the Pathogenesis of C9orf72 Repeat Expansion-Associated FTLD and ALS. Frontiers in Neuroscience, 2019, 13, 486.	2.8	47
30	Prevalence of <i>C9ORF72</i> Expansion in a Large Series of Patients with Idiopathic Normal-Pressure Hydrocephalus. Dementia and Geriatric Cognitive Disorders, 2019, 47, 91-103.	1.5	9
31	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
32	A multiomic approach to characterize the temporal sequence in Alzheimer's disease-related pathology. Neurobiology of Disease, 2019, 124, 454-468.	4.4	41
33	Intranasal insulin activates Akt2 signaling pathway in the hippocampus of wild-type but not in APP/PS1 Alzheimer model mice. Neurobiology of Aging, 2019, 75, 98-108.	3.1	24
34	Interrelationship between the Levels of C9orf72 and Amyloid-β Protein Precursor and Amyloid-β in Human CellsÂand Brain Samples. Journal of Alzheimer's Disease, 2018, 62, 269-278.	2.6	3
35	Sushi repeatâ€containing protein Xâ€linked 2: A novel phylogenetically conserved hypothalamoâ€pituitary protein. Journal of Comparative Neurology, 2018, 526, 1806-1819. 	1.6	4
36	Low Prevalence of Cancer in Patients withÂFrontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2018, 62, 789-794.	2.6	9

Annakaisa Haapasalo

#	Article	IF	CITATIONS
37	Decreased plasma Câ€reactive protein levels in <i><scp>APOE</scp> ε</i> 4 allele carriers. Annals of Clinical and Translational Neurology, 2018, 5, 1229-1240.	3.7	18
38	Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 963.	2.8	65
39	The Association Between Frontotemporal Lobar Degeneration and Bullous Pemphigoid. Journal of Alzheimer's Disease, 2018, 66, 743-750.	2.6	6
40	Prevalence of immunological diseases in a Finnish frontotemporal lobar degeneration cohort with the C9orf72 repeat expansion carriers and non-carriers. Journal of Neuroimmunology, 2018, 321, 29-35.	2.3	19
41	Alzheimer's Disease-Related Polymorphisms in Shunt-Responsive Idiopathic Normal Pressure Hydrocephalus. Journal of Alzheimer's Disease, 2017, 60, 1077-1085.	2.6	8
42	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
43	PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer's Disease. Stem Cell Reports, 2017, 9, 1885-1897.	4.8	239
44	New Implications for the Role for Ubiquilin-1 in Molecular Mechanisms of Alzheime's Disease: Interrelationship with BACE1. , 2017, 7, .		0
45	DHCR24 exerts neuroprotection upon inflammation-induced neuronal death. Journal of Neuroinflammation, 2017, 14, 215.	7.2	34
46	[P3–170]: HUMAN IPSCâ€ÐERIVED ALZHEIMER's DISEASE ASTROCYTES RECAPITULATE DISEASEâ€RELATED PHENOTYPES. Alzheimer's and Dementia, 2017, 13, P999.	0.8	0
47	FRMD4A-cytohesin signaling modulates cellular release of Tau. Journal of Cell Science, 2016, 129, 2003-15.	2.0	27
48	SEPT8 modulates Î ² -amyloidogenic processing of APP via affecting the sorting and accumulation of BACE1. Journal of Cell Science, 2016, 129, 2224-38.	2.0	15
49	Effects of Alzheimer's Disease-Associated Risk Loci on Amyloid-β Accumulation in the Brain of Idiopathic Normal Pressure Hydrocephalus Patients. Journal of Alzheimer's Disease, 2016, 55, 995-1003.	2.6	6
50	Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease. Neurochemistry International, 2016, 92, 13-24.	3.8	49
51	Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models. Neurobiology of Disease, 2016, 85, 187-205.	4.4	27
52	The Expression of Transthyretin and Amyloid-β Protein Precursor is Altered in the Brain of Idiopathic Normal Pressure Hydrocephalus Patients. Journal of Alzheimer's Disease, 2015, 48, 959-968.	2.6	19
53	Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Progress in Neurobiology, 2015, 131, 1-20.	5.7	74
54	Genetic and Molecular Aspects of Frontotemporal Lobar Degeneration. Current Genetic Medicine Reports, 2015, 3, 8-18.	1.9	6

#	Article	IF	CITATIONS
55	Synaptic dysfunction and septin protein family members in neurodegenerative diseases. Molecular Neurodegeneration, 2015, 10, 16.	10.8	95
56	Genetic Variation in δ-Opioid Receptor Associates with Increased β- and γ-Secretase Activity in the Late Stages of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 48, 507-516.	2.6	16
57	Alzheimer's disease: a report from the 7th Kuopio Alzheimer symposium. Neurodegenerative Disease Management, 2015, 5, 379-382.	2.2	22
58	Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and inÂvitro models. Neurobiology of Aging, 2015, 36, 1221.e15-1221.e28.	3.1	55
59	High-fat diet increases tau expression in the brain of T2DM and AD mice independently of peripheral metabolic status. Journal of Nutritional Biochemistry, 2014, 25, 634-641.	4.2	50
60	Effects of Alzheimer's Disease-Associated Risk Loci on Cerebrospinal Fluid Biomarkers and Disease Progression: A Polygenic Risk Score Approach. Journal of Alzheimer's Disease, 2014, 43, 565-573.	2.6	49
61	P1-082: INCREASED GAMMA-SECRETASE ACTIVITY IN IDIOPATHIC NORMAL PRESSURE HYDROCEPHALUS PATIENTS WITH B-AMYLOID PATHOLOGY. , 2014, 10, P332-P333.		0
62	Increased Î ³ -Secretase Activity in Idiopathic Normal Pressure Hydrocephalus Patients with Î ² -Amyloid Pathology. PLoS ONE, 2014, 9, e93717.	2.5	12
63	Regulation of key proteins in Alzheimer's disease molecular pathogenesis by ubiquilin-1. Molecular Neurodegeneration, 2013, 8, P20.	10.8	3
64	Ubiquilin-1 Modulates γ-Secretase-Mediated ε-Site Cleavage in Neuronal Cells. Biochemistry, 2013, 52, 3899-3912.	2.5	14
65	Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome. Progress in Neurobiology, 2013, 106-107, 33-54.	5.7	293
66	Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer's disease. Journal of Nutritional Biochemistry, 2013, 24, 360-370.	4.2	124
67	Targeting ApoE4/ApoE receptor LRP1 in Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2013, 17, 781-794.	3.4	34
68	Targeting ubiquilin-1 in Alzheimer's disease . Expert Opinion on Therapeutic Targets, 2013, 17, 795-810.	3.4	13
69	Elucidation of the BACE1 Regulating Factor GGA3 in Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 37, 217-232.	2.6	22
70	Î ³ -Secretase Components as Predictors of Breast Cancer Outcome. PLoS ONE, 2013, 8, e79249.	2.5	13
71	Effects of NR1H3 Genetic Variation on the Expression of Liver X Receptor \hat{I}_{\pm} and the Progression of Alzheimer's Disease. PLoS ONE, 2013, 8, e80700.	2.5	16
72	Protein aggregation and degradation mechanisms in neurodegenerative diseases. American Journal of Neurodegenerative Disease, 2013, 2, 1-14.	0.1	125

Annakaisa Haapasalo

#	Article	IF	CITATIONS
73	Bepridil decreases <scp>A</scp> β and calcium levels in the thalamus after middle cerebral artery occlusion in rats. Journal of Cellular and Molecular Medicine, 2012, 16, 2754-2767.	3.6	18
74	GRN Variant rs5848 Reduces Plasma and Brain Levels of Granulin in Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2012, 33, 23-27.	2.6	43
75	Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer's disease. Progress in Neurobiology, 2012, 96, 87-95.	5.7	128
76	Genetic Analysis of Genes Involved in Amyloid-β Degradation and Clearance in Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 28, 553-559.	2.6	16
77	Contribution of genetic and dietary insulin resistance to Alzheimer phenotype in APP/PS1 transgenic mice . Journal of Cellular and Molecular Medicine, 2012, 16, 1206-1222.	3.6	67
78	No association between high temperature requirement 1 (HTRA1) gene polymorphisms and Alzheimer's disease. Neurobiology of Aging, 2011, 32, 547.e7-547.e9.	3.1	7
79	Age-Related Macular Degeneration (AMD): Alzheimer's Disease in the Eye?. Journal of Alzheimer's Disease, 2011, 24, 615-631.	2.6	211
80	The Many Substrates of Presenilin/ \hat{I}^3 -Secretase. Journal of Alzheimer's Disease, 2011, 25, 3-28.	2.6	438
81	Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. European Journal of Neuroscience, 2011, 34, 3-11.	2.6	276
82	AMPâ€activated protein kinase: a potential player in Alzheimer's disease. Journal of Neurochemistry, 2011, 118, 460-474.	3.9	176
83	Alzheimer's Diseaseâ€Associated Ubiquilinâ€1 Regulates Presenilinâ€1 Accumulation and Aggresome Formation. Traffic, 2011, 12, 330-348.	2.7	69
84	Chronic Hyperperfusion and Angiogenesis Follow Subacute Hypoperfusion in the Thalamus of Rats with Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1119-1132.	4.3	33
85	Cysteine 27 Variant of the δ-Opioid Receptor Affects Amyloid Precursor Protein Processing through Altered Endocytic Trafficking. Molecular and Cellular Biology, 2011, 31, 2326-2340.	2.3	29
86	Involvement of ubiquilin-1 transcript variants in protein degradation and accumulation. Communicative and Integrative Biology, 2011, 4, 428-432.	1.4	6
87	Involvement of ubiquilin-1 transcript variants in protein degradation and accumulation. Communicative and Integrative Biology, 2011, 4, 428-32.	1.4	5
88	Emerging role of Alzheimer's disease-associated ubiquilin-1 in protein aggregation. Biochemical Society Transactions, 2010, 38, 150-155.	3.4	42
89	An Association Study of 21 Potential Alzheimer's Disease Risk Genes in a Finnish Population. Journal of Alzheimer's Disease, 2010, 21, 763-767.	2.6	12
90	Down-regulation of Seladin-1 Increases BACE1 Levels and Activity through Enhanced GGA3 Depletion during Apoptosis. Journal of Biological Chemistry, 2009, 284, 34433-34443.	3.4	54

#	Article	IF	CITATIONS
91	An association study between granulin gene polymorphisms and Alzheimer's disease in Finnish population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 747-750.	1.7	47
92	Presenilin/γ-Secretase-mediated Cleavage Regulates Association of Leukocyte-Common Antigen-related (LAR) Receptor Tyrosine Phosphatase with β-Catenin. Journal of Biological Chemistry, 2007, 282, 9063-9072.	3.4	49
93	Presenilin/γâ€secretase activity regulates protein clearance from the endocytic recycling compartment. FASEB Journal, 2006, 20, 1176-1178.	0.5	64
94	Activation of the TrkB Neurotrophin Receptor Is Induced by Antidepressant Drugs and Is Required for Antidepressant-Induced Behavioral Effects. Journal of Neuroscience, 2003, 23, 349-357.	3.6	720
95	Regulation of TRKB Surface Expression by Brain-derived Neurotrophic Factor and Truncated TRKB Isoforms. Journal of Biological Chemistry, 2002, 277, 43160-43167.	3.4	141
96	Truncated trkB.T1 Is Dominant Negative Inhibitor of trkB.TK+-Mediated Cell Survival. Biochemical and Biophysical Research Communications, 2001, 280, 1352-1358.	2.1	108
97	Increased expression of neuronal Src and tyrosine phosphorylation of NMDA receptors in rat brain after systemic treatment with MK-801. Neuropharmacology, 2001, 40, 469-481.	4.1	8
98	Subcellular localization of fragile X mental retardation protein with the I304N mutation in the RNA-binding domain in cultured hippocampal neurons. Cellular and Molecular Neurobiology, 2001, 21, 29-38.	3.3	13
99	Transgenic Mice Overexpressing Truncated trkB Neurotrophin Receptors in Neurons Show Increased Susceptibility to Cortical Injury after Focal Cerebral Ischemia. Molecular and Cellular Neurosciences, 2000, 16, 87-96.	2.2	79
100	Subcellular Localization of Full-Length and Truncated Trk Receptor Isoforms in Polarized Neurons and Epithelial Cells. Journal of Neuroscience, 1999, 19, 5823-5833.	3.6	55
101	Expression of the naturally occurring truncated trkB neurotrophin receptor induces outgrowth of filopodia and processes in neuroblastoma cells. Oncogene, 1999, 18, 1285-1296.	5.9	63