
Ã%ika C Pavarino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7640417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential microRNA expression profile in blood of children with Down syndrome suggests a role in immunological dysfunction. Human Cell, 2022, 35, 639-648.	2.7	2
2	MiR-612, miR-637, and miR-874 can Regulate VEGFA Expression in Hepatocellular Carcinoma Cell Lines. Genes, 2022, 13, 282.	2.4	1
3	Regulation of VEGFA, KRAS, and NFE2L2 Oncogenes by MicroRNAs in Head and Neck Cancer. International Journal of Molecular Sciences, 2022, 23, 7483.	4.1	5
4	Alzheimer's Disease in the Down Syndrome: An Overview of Genetics and Molecular Aspects. Neurology India, 2021, 69, 32.	0.4	3
5	Polymorphisms in xenobiotic metabolism-related genes in patients with hepatocellular carcinoma: a case–control study. Xenobiotica, 2021, 51, 1-9.	1.1	5
6	Evaluation of molecular markers GSTM1 and GSTT1 and clinical factors in breast cancer: case-control study and literature review. Xenobiotica, 2021, 51, 1326-1334.	1.1	4
7	One-carbon metabolism and global DNA methylation in mothers of individuals with Down syndrome. Human Cell, 2021, 34, 1671-1681.	2.7	3
8	Association between folate metabolism polymorphisms and breast cancer: a case-control study. Genetics and Molecular Biology, 2021, 44, e20200485.	1.3	4
9	Psychosocial and Motor Characteristics of Patients With Hypermobility. Frontiers in Psychiatry, 2021, 12, 787822.	2.6	4
10	Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine, 2020, 136, 155270.	3.2	15
11	MicroRNAs as regulators of VEGFA and NFE2L2 in cancer. Gene, 2020, 759, 144994.	2.2	21
12	Differential expression of angiogenesis-related miRNAs and VEGFA in cirrhosis and hepatocellular carcinoma. Archives of Medical Science, 2020, 16, 1150-1157.	0.9	27
13	VEGFA and NFE2L2 Gene Expression and Regulation by MicroRNAs in Thyroid Papillary Cancer and Colloid Goiter. Genes, 2020, 11, 954.	2.4	18
14	Trends and predictions for survival and mortality in individuals with Down syndrome in Brazil: A 21â€year analysis. Journal of Intellectual Disability Research, 2020, 64, 551-560.	2.0	5
15	Glutathione S-transferase Polymorphisms in Head and Neck Squamous Cell Carcinoma Treated with Chemotherapy and/or Radiotherapy. Asian Pacific Journal of Cancer Prevention, 2020, 21, 1637-1644.	1.2	5
16	Gene Polymorphisms Involved in Folate Metabolism and DNA Methylation with the Risk of Head and Neck Cancer. Asian Pacific Journal of Cancer Prevention, 2020, 21, 3751-3759.	1.2	8
17	Vitamin D3 increases the Caspase-3 p12, MTHFR, and P-glycoprotein reducing amyloid-β42 in the kidney of a mouse model for Down syndrome. Life Sciences, 2019, 231, 116537.	4.3	4
18	Polymorphisms in MTHFR, MTR, RFC1 and CßS genes involved in folate metabolism and thyroid cancer: a case-control study. Archives of Medical Science, 2019, 15, 522-530.	0.9	14

#	Article	IF	CITATIONS
19	Molecular evaluation of glutathione S transferase family genes in patients with sporadic colorectal cancer. World Journal of Gastroenterology, 2018, 24, 4462-4471.	3.3	12
20	Differential Expression of Prostaglandin I2 Synthase Associated with Arachidonic Acid Pathway in the Oral Squamous Cell Carcinoma. Journal of Oncology, 2018, 2018, 1-13.	1.3	10
21	Interleukin 6 and 10 Serum Levels and Genetic Polymorphisms in Children with Down Syndrome. Mediators of Inflammation, 2018, 2018, 1-9.	3.0	5
22	Candidate Biomarkers for Oral Squamous Cell Carcinoma: Differential Expression of Oxidative Stress-Related Genes. Asian Pacific Journal of Cancer Prevention, 2018, 19, 1343-1349.	1.2	20
23	Relationship between CD44/CD133/CD117 cancer stem cells phenotype and Cetuximab and Paclitaxel treatment response in head and neck cancer cell lines. American Journal of Cancer Research, 2018, 8, 1633-1641.	1.4	10
24	Clinical, Epidemiological and Histopathological Aspects in Patients with Hepatocellular Carcinoma Undergoing Liver Transplantation. Asian Pacific Journal of Cancer Prevention, 2018, 19, 2795-2802.	1.2	5
25	Research Article Polymorphisms of interleukin 6 in Down syndrome individuals: a case-control study Genetics and Molecular Research, 2017, 16, .	0.2	1
26	Hepatocellular Carcinoma: a Comprehensive Review of Biomarkers, Clinical Aspects, and Therapy. Asian Pacific Journal of Cancer Prevention, 2017, 18, 863-872.	1.2	62
27	Differential Expression of Inflammation-Related Genes in Children with Down Syndrome. Mediators of Inflammation, 2016, 2016, 1-8.	3.0	12
28	Role of MTHFR C677T and MTR A2756G polymorphisms in thyroid and breast cancer development. Genetics and Molecular Research, 2016, 15, .	0.2	17
29	Trisomy 21 Alters DNA Methylation in Parent-of-Origin-Dependent and -Independent Manners. PLoS ONE, 2016, 11, e0154108.	2.5	52
30	Variables associated to fetal microchimerism in systemic lupus erythematosus patients. Clinical Rheumatology, 2016, 35, 107-111.	2.2	9
31	<i>CYP1A1</i> , <i>CYP2E1</i> and <i>EPHX1</i> polymorphisms in sporadic colorectal neoplasms. World Journal of Gastroenterology, 2016, 22, 9974.	3.3	16
32	Polymorphisms of folate metabolism genes in patients with cirrhosis and hepatocellular carcinoma. World Journal of Hepatology, 2016, 8, 1234.	2.0	18
33	A case-control study of CYP2E1 (PstI) and CYP1A1 (MspI) polymorphisms in colorectal cancer. Genetics and Molecular Research, 2015, 14, 17856-17863.	0.2	4
34	Neurofibromatosis: part 2 – clinical management. Arquivos De Neuro-Psiquiatria, 2015, 73, 531-543.	0.8	10
35	ls Magnetic Resonance Spectroscopy Capable of Detecting Metabolic Abnormalities in Neurofibromatosis Type 1 That Are Not Revealed in Brain Parenchyma of Normal Appearance?. Pediatric Neurology, 2015, 52, 314-319.	2.1	8
36	Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer. Tumor Biology, 2015, 36, 9159-9170.	1.8	58

#	Article	IF	CITATIONS
37	<i>TLR2</i> and <i>TLR4</i> polymorphisms influence mRNA and protein expression in colorectal cancer. World Journal of Gastroenterology, 2015, 21, 7730.	3.3	31
38	Neurofibromatoses: part 1 ? diagnosis and differential diagnosis. Arquivos De Neuro-Psiquiatria, 2014, 72, 241-250.	0.8	27
39	Genetic Polymorphisms Involved in Folate Metabolism and Maternal Risk for Down Syndrome: A Meta-Analysis. Disease Markers, 2014, 2014, 1-12.	1.3	18
40	DNMT3B C46359T and SHMT1 C1420T polymorphisms in the folate pathway in carcinogenesis of head and neck. Molecular Biology Reports, 2014, 41, 581-589.	2.3	17
41	Meta-analysis of Methylenetetrahydrofolate reductase maternal gene in Down syndrome: increased susceptibility in women carriers of the MTHFR 677T allele. Molecular Biology Reports, 2014, 41, 5491-5504.	2.3	13
42	Gene expression profile of 5-fluorouracil metabolic enzymes in laryngeal cancer cell line: Predictive parameters for response to 5-fluorouracil-based chemotherapy. Biomedicine and Pharmacotherapy, 2014, 68, 515-519.	5.6	5
43	Altered Expression of Immune-Related Genes in Children with Down Syndrome. PLoS ONE, 2014, 9, e107218.	2.5	23
44	Alterations in the expression pattern of MTHFR, DHFR, TYMS, and SLC19A1 genes after treatment of laryngeal cancer cells with high and low doses of methotrexate. Tumor Biology, 2013, 34, 3765-3771.	1.8	15
45	Association between GSTP1, GSTM1 and GSTT1 polymorphisms involved in xenobiotic metabolism and head and neck cancer development. Molecular Biology Reports, 2013, 40, 4181-4188.	2.3	10
46	<i>DHFR</i> 19-bp Deletion and <i>SHMT</i> C1420T Polymorphisms and Metabolite Concentrations of the Folate Pathway in Individuals with Down Syndrome. Genetic Testing and Molecular Biomarkers, 2013, 17, 274-277.	0.7	7
47	No evidence for association of the CD40, CD40L and BLYS polymorphisms, B-cell co-stimulatory molecules, with Brazilian endemic Plasmodium vivax malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2013, 107, 377-383.	1.8	9
48	Head and neck cancer: causes, prevention and treatment. Brazilian Journal of Otorhinolaryngology, 2013, 79, 239-247.	1.0	105
49	<i>BHMT</i> G742A and <i>MTHFD1</i> G1958A Polymorphisms and Down Syndrome Risk in the Brazilian Population. Genetic Testing and Molecular Biomarkers, 2012, 16, 628-631.	0.7	14
50	Head and neck cancer: genetic polymorphisms and folate metabolism. Brazilian Journal of Otorhinolaryngology, 2012, 78, 132-139.	1.0	14
51	Association between 11 genetic polymorphisms in folate-metabolising genes and head and neck cancer risk. European Journal of Cancer, 2012, 48, 1525-1531.	2.8	27
52	Genetic polymorphisms modulate the folate metabolism of Brazilian individuals with Down syndrome. Molecular Biology Reports, 2012, 39, 9277-9284.	2.3	12
53	Maternal Risk for Down Syndrome Is Modulated by Genes Involved in Folate Metabolism. Disease Markers, 2012, 32, 73-81.	1.3	39
54	Clinical and epidemiological characteristics of patients in the head and neck surgery department of a university hospital. Sao Paulo Medical Journal, 2012, 130, 307-313.	0.9	22

#	Article	IF	CITATIONS
55	Q36R polymorphism of KiSS-1 gene in Brazilian head and neck cancer patients. Molecular Biology Reports, 2012, 39, 6029-6034.	2.3	4
56	Diffusion tensor MR imaging in neurofibromatosis type 1: expanding the knowledge of microstructural brain abnormalities. Pediatric Radiology, 2012, 42, 449-454.	2.0	32
57	Unidentified bright objects in neurofibromatosis type 1: Conventional MRI in the follow-up and correlation of microstructural lesions on diffusion tensor images. European Journal of Paediatric Neurology, 2012, 16, 42-47.	1.6	32
58	Polymorphisms and haplotypes in methylenetetrahydrofolate reductase gene and head and neck squamous cell carcinoma risk. Molecular Biology Reports, 2012, 39, 635-643.	2.3	20
59	MTHFD1 G1958A, BHMT G742A, TC2 C776G and TC2 A67G polymorphisms and head and neck squamous cell carcinoma risk. Molecular Biology Reports, 2012, 39, 887-893.	2.3	16
60	Polymorphisms of the CYP1A1 and CYP2E1 genes in head and neck squamous cell carcinoma risk. Molecular Biology Reports, 2012, 39, 1055-1063.	2.3	19
61	Polymorphism C1420T of Serine hydroxymethyltransferase gene on maternal risk for Down syndrome. Molecular Biology Reports, 2012, 39, 2561-2566.	2.3	16
62	VEGF gene alternative splicing: pro- and anti-angiogenic isoforms in cancer. Journal of Cancer Research and Clinical Oncology, 2012, 138, 363-370.	2.5	80
63	Maternal risk for Down syndrome is modulated by genes involved in folate metabolism. Disease Markers, 2012, 32, 73-81.	1.3	27
64	Carcinogênese de cabeça e pescoço: impacto do polimorfismo MTHFD1 G1958A. Revista Da Associação Médica Brasileira, 2011, 57, 194-199.	0.7	10
65	A80G polymorphism of reduced folate carrier 1 (RFC1) gene and head and neck squamous cell carcinoma etiology in Brazilian population. Molecular Biology Reports, 2011, 38, 1071-1078.	2.3	15
66	Análise do gene TAX1BP1 em pacientes com câncer de cabeça e pescoço. Brazilian Journal of Otorhinolaryngology, 2010, 76, 193-198.	1.0	3
67	Genetic polymorphisms involved in folate metabolism and concentrations of methylmalonic acid and folate on plasma homocysteine and risk of coronary artery disease. Journal of Thrombosis and Thrombolysis, 2010, 29, 32-40.	2.1	32
68	Polimorfismo do gene metilenotetra-hidrofolato redutase (MTHFR) e o risco de carcinoma espinocelular de cabeça e pescoço. Brazilian Journal of Otorhinolaryngology, 2010, 76, 776-782.	1.0	10
69	The association between CBS 844ins68 polymorphism and head and neck squamous cell carcinoma risk – a case-control analysis. Archives of Medical Science, 2010, 5, 772-779.	0.9	12
70	19-base pair deletion polymorphism of the dihydrofolate reductase (DHFR) gene: maternal risk of Down syndrome and folate metabolism. Sao Paulo Medical Journal, 2010, 128, 215-218.	0.9	7
71	Análise dos genes GSTM1 e GSTT1 em pacientes com câncer de cabeça e pescoço. Revista Da Associação Médica Brasileira, 2010, 56, 299-303.	0.7	20
72	5-Methyltetrahydrofolate-homocysteine methyltransferase gene polymorphism (MTR) and risk of head and neck cancer. Brazilian Journal of Medical and Biological Research, 2010, 43, 445-450.	1.5	19

#	Article	IF	CITATIONS
73	Genetic variability of vascular endothelial growth factor and prognosis of head and neck cancer in a Brazilian population. Brazilian Journal of Medical and Biological Research, 2010, 43, 127-133.	1.5	10
74	HomocisteÃna e polimorfismos dos genes MTHFR e VEGF: impacto na doença arterial coronariana. Arquivos Brasileiros De Cardiologia, 2009, 92, 263-268.	0.8	16
75	The maspin expression in canine mammary tumors: an immunohistochemical and molecular study. Pesquisa Veterinaria Brasileira, 2009, 29, 167-173.	0.5	1
76	Unidentified bright objects on brain MRI in children as a diagnostic criterion for neurofibromatosis type 1. Pediatric Radiology, 2008, 38, 305-310.	2.0	70
77	Vascular endothelial growth factor genetic variability and coronary artery disease in Brazilian population. Heart and Vessels, 2008, 23, 371-375.	1.2	40
78	GAPO syndrome: Three new Brazilian cases, additional osseous manifestations, and review of the literature. American Journal of Medical Genetics, Part A, 2008, 146A, 1523-1529.	1.2	19
79	Influence of UDP-Glucuronosyltransferase Polymorphisms on Mycophenolate Mofetil-Induced Side Effects in Kidney Transplant Patients. Transplantation Proceedings, 2008, 40, 708-710.	0.6	15
80	Role of Glutathione S-Transferase Polymorphisms and Chronic Allograft Dysfunction. Transplantation Proceedings, 2008, 40, 743-745.	0.6	10
81	Effect of Whole Bone Marrow Cell Infusion in the Progression of Experimental Chronic Renal Failure. Transplantation Proceedings, 2008, 40, 853-855.	0.6	44
82	Identification of dysregulated genes in lymphocytes from children with Down syndrome. Genome, 2008, 51, 19-29.	2.0	39
83	The MTR A2756G polymorphism is associated with an increase of plasma homocysteine concentration in Brazilian individuals with Down syndrome. Brazilian Journal of Medical and Biological Research, 2008, 41, 34-40.	1.5	21
84	Effectiveness of two programs of intermittent ferrous supplementation for treating iron-deficiency anemia in infants: randomized clinical trial. Sao Paulo Medical Journal, 2008, 126, 314-318.	0.9	10
85	A80G polymorphism of reduced folate carrier 1 (RFC1) and C776G polymorphism of transcobalamin 2 (TC2) genes in Down's syndrome etiology. Sao Paulo Medical Journal, 2008, 126, 329-332.	0.9	22
86	Genetic polymorphisms involved in folate metabolism and elevated plasma concentrations of homocysteine: maternal risk factors for Down syndrome in Brazil. Genetics and Molecular Research, 2008, 7, 33-42.	0.2	63
87	Combination of Angiotensin-Converting Enzyme and Methylenetetrahydrofolate Reductase Gene Polymorphisms as Determinant Risk Factors for Chronic Allograft Dysfunction. Transplantation Proceedings, 2007, 39, 78-80.	0.6	11
88	Effect of Folate, Vitamin B6, and Vitamin B12 Intake and MTHFR C677T Polymorphism on Homocysteine Concentrations of Renal Transplant Recipients. Transplantation Proceedings, 2007, 39, 3163-3165.	0.6	6
89	Methylenetetrahydrofolate reductase gene polymorphism and its association with coronary artery disease. Sao Paulo Medical Journal, 2007, 125, 4-8.	0.9	10
90	Genetic relatedness among clinical strains of Stenotrophomonas maltophilia in tertiary care hospital settings in São Paulo State, Brazil. Brazilian Journal of Microbiology, 2007, 38, 278-284.	2.0	2

#	Article	IF	CITATIONS
91	Angiotensin-Converting Enzyme Gene Polymorphism in Chronic Allograft Nephropathy. Transplantation Proceedings, 2006, 38, 1327-1328.	0.6	11
92	High frequencies of plexiform neurofibromas, mental retardation, learning difficulties, and scoliosis in Brazilian patients with neurofibromatosis type 1. Brazilian Journal of Medical and Biological Research, 2005, 38, 1441-1447.	1.5	19
93	Hyperhomocysteinemia and MTHFR C677T and A1298C polymorphisms are associated with chronic allograft nephropathy in renal transplant recipients. Transplantation Proceedings, 2004, 36, 2979-2981.	0.6	15
94	Systemic lupus erythematosus and microchimerism in autoimmunity. Transplantation Proceedings, 2002, 34, 2951-2952.	0.6	47
95	Analysis of the TP53 Gene in Normal Skin and Hair Follicle Samples From Sun-Exposed and Non-Sun-Exposed Sites on Normal and Albino Individuals Living in Southeast Brazil. Archives of Dermatology, 1999, 135, 1559-1560.	1.4	0
96	Chromosome breakpoint distribution in nonmelanoma skin cancers. Cancer Genetics and Cytogenetics, 1997, 99, 81-84.	1.0	1
97	Cytogenetic study of neoplastic and nonneoplastic cells of the skin. Cancer Genetics and Cytogenetics, 1995, 85, 16-19.	1.0	13