
Tukayi Kudanga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7640378/publications.pdf Version: 2024-02-01

Τυκλγι Κυσληςλ

#	Article	IF	CITATIONS
1	Laccase-mediated modification of isorhamnetin improves antioxidant and antibacterial activities. Process Biochemistry, 2022, 112, 53-61.	1.8	11
2	Biodegradation of petroleum hydrocarbon waste using consortia of Bacillus sp. Bioremediation Journal, 2021, 25, 72-79.	1.0	4
3	Industrial Applications of Opuntia spp. (Nopal, Fruit and Peel). , 2021, , 841-875.		0
4	Enzymatic treatment of phenolic pollutants by a small laccase immobilized on APTES-functionalised magnetic nanoparticles. 3 Biotech, 2021, 11, 302.	1.1	11
5	Phytochemical Content, Antioxidant, Alpha-Glucosidase Inhibitory and Antibacterial Activities of Spineless Cactus Pear Cultivars. Plants, 2021, 10, 1312.	1.6	4
6	Enhancing the expression of recombinant small laccase in Pichia pastoris by a double promoter system and application in antibiotics degradation. Folia Microbiologica, 2021, 66, 917-930.	1.1	8
7	Enzymatic dimerization of luteolin enhances antioxidant and antimicrobial activities. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102105.	1.5	8
8	Nutritional variability in 42 cultivars of spineless cactus pear cladodes for crop improvement. South African Journal of Botany, 2021, 142, 140-148.	1.2	3
9	Transglutaminase and tyrosinase as potential crossâ€linking tools for the improvement of rheological properties of glutenâ€free amadumbe dough. International Journal of Food Science and Technology, 2020, 55, 2399-2407.	1.3	7
10	Production and characterisation of a novel actinobacterial DyP-type peroxidase and its application in coupling of phenolic monomers. Enzyme and Microbial Technology, 2020, 141, 109654.	1.6	14
11	Transglutaminase-mediated crosslinking of Bambara groundnut protein hydrogels: Implications on rheological, textural and microstructural properties. Food Research International, 2020, 137, 109734.	2.9	22
12	Rheological and microstructural properties of Bambara groundnut protein gels. LWT - Food Science and Technology, 2020, 123, 109070.	2.5	7
13	Extractable and macromolecular antioxidants of Opuntia ficus-indica cladodes: Phytochemical profiling, antioxidant and antibacterial activities. South African Journal of Botany, 2019, 125, 402-410.	1.2	27
14	Phenolic compound profile and biological activities of Southern African Opuntia ficus-indica fruit pulp and peels. LWT - Food Science and Technology, 2019, 111, 337-344.	2.5	57
15	Composition, thermal and rheological properties of polysaccharides from amadumbe (Colocasia) Tj ETQq1 1 0	.784314 rgl	3T /Overlock
16	Laccase-mediated crosslinking of gluten-free amadumbe flour improves rheological properties. Food Chemistry, 2018, 264, 157-163.	4.2	35
17	Small laccase-catalyzed synthesis of a caffeic acid dimer with high antioxidant capacity. Process Biochemistry, 2018, 69, 99-105.	1.8	28
18	Opuntia (Cactaceae) plant compounds, biological activities and prospects – A comprehensive review. Food Research International, 2018, 112, 328-344.	2.9	93

Tukayi Kudanga

#	Article	IF	CITATIONS
19	Secretory expression of recombinant small laccase from Streptomyces coelicolor A3(2) in Pichia pastoris. International Journal of Biological Macromolecules, 2018, 108, 642-649.	3.6	19
20	Two distinct enzymatic approaches for coupling fatty acids onto lignocellulosic materials. Process Biochemistry, 2017, 59, 111-115.	1.8	6
21	Laccase catalysis for the synthesis of bioactive compounds. Applied Microbiology and Biotechnology, 2017, 101, 13-33.	1.7	127
22	Fruit waste streams in South Africa and their potential role in developing a bio-economy. South African Journal of Science, 2015, 111, 1-11.	0.3	30
23	The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3(2). Enzyme and Microbial Technology, 2015, 68, 23-32.	1.6	40
24	Laccase Functionalization of Flax and Coconut Fibers. Polymers, 2014, 6, 1676-1684.	2.0	18
25	Laccase applications in biofuels production: current status and future prospects. Applied Microbiology and Biotechnology, 2014, 98, 6525-6542.	1.7	130
26	Enzymatic oxidative dimerization of silymarin flavonolignans. Journal of Molecular Catalysis B: Enzymatic, 2014, 109, 24-30.	1.8	26
27	Novel, Biocatalytically Produced Hydroxytyrosol Dimer Protects against Ultraviolet-Induced Cell Death in Human Immortalized Keratinocytes. Journal of Agricultural and Food Chemistry, 2012, 60, 11509-11517.	2.4	24
28	Enzymatic modification of 2,6-dimethoxyphenol for the synthesis of dimers with high antioxidant capacity. Process Biochemistry, 2012, 47, 1926-1932.	1.8	43
29	Versatility of oxidoreductases in the remediation of environmental pollutants. Frontiers in Bioscience - Elite, 2012, E4, 1127.	0.9	3
30	Enzymatic synthesis of lignin–siloxane hybrid functional polymers. Biotechnology Journal, 2012, 7, 284-292.	1.8	11
31	Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 29-35.	1.8	68
32	Versatility of oxidoreductases in the remediation of environmental pollutants. Frontiers in Bioscience - Elite, 2012, E4, 1127-1149.	0.9	17
33	Potential applications of laccase-mediated coupling and grafting reactions: A review. Enzyme and Microbial Technology, 2011, 48, 195-208.	1.6	270
34	Antimicrobial and antioxidant linen via laccase-assisted grafting. Reactive and Functional Polymers, 2011, 71, 713-720.	2.0	66
35	Chemo-enzymatic functionalisation of lignocellulose materials using oxiranes. Process Biochemistry, 2010, 45, 1557-1562.	1.8	23
36	Cellular and plasma antioxidant activity assay using tetramethoxy azobismethylene quinone. Free Radical Biology and Medicine, 2010, 49, 1205-1211.	1.3	8

Tukayi Kudanga

#	Article	IF	CITATIONS
37	Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. Process Biochemistry, 2010, 45, 1072-1081.	1.8	69
38	Reactivity of long chain alkylamines to lignin moieties: Implications on hydrophobicity of lignocellulose materials. Journal of Biotechnology, 2010, 149, 81-87.	1.9	55
39	Laccase-generated tetramethoxy azobismethylene quinone (TMAMQ) as a tool for antioxidant activity measurement. Food Chemistry, 2010, 118, 437-444.	4.2	23
40	Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresource Technology, 2010, 101, 5054-5062.	4.8	112
41	Enzymatic grafting of functional molecules to the lignin model dibenzodioxocin and lignocellulose material. Enzyme and Microbial Technology, 2010, 46, 272-280.	1.6	51
42	Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity. Bioresource Technology, 2010, 101, 2793-2799.	4.8	59
43	Enzymatic Polymer Functionalisation: Advances in Laccase and Peroxidase Derived Lignocellulose Functional Polymers. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 47-68.	0.6	14
44	Mechanistic insights into laccase-mediated functionalisation of lignocellulose material. Biotechnology and Genetic Engineering Reviews, 2010, 27, 305-330.	2.4	22
45	Grafting of Functional Molecules: Insights into Peroxidase-Derived Materials. , 2010, , 155-177.		3
46	Coupling of aromatic amines onto syringylglycerol β-guaiacylether using Bacillus SF spore laccase: A model for functionalization of lignin-based materials. Journal of Molecular Catalysis B: Enzymatic, 2009, 61, 143-149.	1.8	45
47	Antioxidant activity assay based on laccase-generated radicals. Analytical and Bioanalytical Chemistry, 2009, 393, 679-687.	1.9	37
48	Laccaseâ€Mediated Wood Surface Functionalization. Engineering in Life Sciences, 2008, 8, 297-302.	2.0	56
49	Esterases and putative lipases from tropical isolates ofAureobasidium pullulans. Journal of Basic Microbiology, 2007, 47, 138-147.	1.8	16
50	Extracellular cellulase production by tropical isolates of <i>Aureobasidium pullulans</i> . Canadian Journal of Microbiology, 2005, 51, 773-776.	0.8	37
51	Isolation of Aureobasidium pullulans from Zimbabwean sources and glucosidase activities of selected isolates. South African Journal of Botany, 2001, 67, 157-160.	1.2	10
52	Potato peels as feedstock for laccase-catalysed synthesis of phellinsin A. Biomass Conversion and Biorefinery, 0, , 1.	2.9	3