
Wangxue Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7640273/publications.pdf Version: 2024-02-01

WANCYLE CHEN

#	Article	IF	CITATIONS
1	Will the mRNA vaccine platform be the panacea for the development of vaccines against antimicrobial resistant (AMR) pathogens?. Expert Review of Vaccines, 2022, 21, 155-157.	2.0	8
2	Universal antibody targeting the highly conserved fusion peptide provides cross-protection in mice. Human Vaccines and Immunotherapeutics, 2022, 18, .	1.4	1
3	Exploiting the Achilles' Heel of Iron Dependence in Antibiotic Resistant Bacteria with New Antimicrobial Iron Withdrawal Agents. Sustainable Agriculture Reviews, 2021, , 251-311.	0.6	3
4	Where are we and how far is there to go in the development of an <i>Acinetobacter</i> vaccine?. Expert Review of Vaccines, 2021, 20, 281-295.	2.0	7
5	Iron-withdrawing anti-infectives for new host-directed therapies based on iron dependence, the Achilles' heel of antibiotic-resistant microbes. Environmental Chemistry Letters, 2021, 19, 2789-2808.	8.3	9
6	The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines, 2021, 9, 917.	2.1	13
7	Synthetic vaccine affords full protection to mice against lethal challenge of influenza B virus of both genetic lineages. IScience, 2021, 24, 103328.	1.9	4
8	Immunogenic and efficacious SARS-CoV-2 vaccine based on resistin-trimerized spike antigen SmT1 and SLA archaeosome adjuvant. Scientific Reports, 2021, 11, 21849.	1.6	26
9	A Slam-dependent hemophore contributes to heme acquisition in the bacterial pathogen Acinetobacter baumannii. Nature Communications, 2021, 12, 6270.	5.8	20
10	DNA Based Vaccine Expressing SARS-CoV-2 Spike-CD40L Fusion Protein Confers Protection Against Challenge in a Syrian Hamster Model. Frontiers in Immunology, 2021, 12, 785349.	2.2	7
11	Host Innate Immune Responses to Acinetobacter baumannii Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 486.	1.8	36
12	Host–pathogen interactions in <i>Acinetobacter baumannii</i> infection: recent advances and future challenges. Future Microbiology, 2020, 15, 841-845.	1.0	3
13	Promise and challenges in the development of COVID-19 vaccines. Human Vaccines and Immunotherapeutics, 2020, 16, 2604-2608.	1.4	31
14	Dysregulation of Ephrin receptor and PPAR signaling pathways in neural progenitor cells infected by Zika virus. Emerging Microbes and Infections, 2020, 9, 2046-2060.	3.0	16
15	Characterization of Extremely Drug-Resistant and Hypervirulent Acinetobacter baumannii AB030. Antibiotics, 2020, 9, 328.	1.5	11
16	Oral immunization of mice with a multivalent therapeutic subunit vaccine protects against Helicobacter pylori infection. Vaccine, 2020, 38, 3031-3041.	1.7	24
17	Parenteral immunization with a cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) adjuvanted <i>Helicobacter pylori</i> vaccine induces protective immunity against <i>H. pylori</i> infection in mice. Human Vaccines and Immunotherapeutics, 2020, 16, 2849-2854.	1.4	12
18	Potential Mechanisms of Mucin-Enhanced Acinetobacter baumannii Virulence in the Mouse Model of Intraperitoneal Infection. Infection and Immunity, 2019, 87, .	1.0	10

#	Article	IF	CITATIONS
19	Archaeal glycolipid adjuvanted vaccines induce strong influenza-specific immune responses through direct immunization in young and aged mice or through passive maternal immunization. Vaccine, 2019, 37, 7108-7116.	1.7	24
20	Antibiotic-Resistant <i>Acinetobacter baumannii</i> Is Susceptible to the Novel Iron-Sequestering Anti-infective DIBI <i>In Vitro</i> and in Experimental Pneumonia in Mice. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	23
21	Acute intraperitoneal infection with a hypervirulent Acinetobacter baumannii isolate in mice. Scientific Reports, 2019, 9, 6538.	1.6	28
22	2′-Fluoro-c-di-GMP as an oral vaccine adjuvant. RSC Advances, 2019, 9, 41481-41489.	1.7	3
23	Profiling of Cytokine and Chemokine Responses Using Multiplex Bead Array Technology. Methods in Molecular Biology, 2019, 2024, 79-94.	0.4	9
24	Contribution of Active Iron Uptake to Acinetobacter baumannii Pathogenicity. Infection and Immunity, 2019, 87, .	1.0	64
25	Safety and biodistribution of sulfated archaeal glycolipid archaeosomes as vaccine adjuvants. Human Vaccines and Immunotherapeutics, 2018, 14, 1746-1759.	1.4	21
26	Mouse Models of <i>Acinetobacter baumannii</i> Infection. Current Protocols in Microbiology, 2017, 46, 6G.3.1-6G.3.23.	6.5	26
27	Host resistance to intranasal <i>Acinetobacter baumannii</i> reinfection in mice. Pathogens and Disease, 2016, 74, ftw048.	0.8	5
28	Hemagglutinin and neuraminidase containing virus-like particles produced in HEK-293 suspension culture: An effective influenza vaccine candidate. Vaccine, 2016, 34, 3371-3380.	1.7	44
29	Induction of mucosal immunity through systemic immunization: Phantom or reality?. Human Vaccines and Immunotherapeutics, 2016, 12, 1070-1079.	1.4	131
30	Host Fate is Rapidly Determined by Innate Effector-Microbial Interactions During Acinetobacter baumannii Bacteremia. Journal of Infectious Diseases, 2015, 211, 1296-305.	1.9	79
31	Current advances and challenges in the development of <i>Acinetobacter</i> vaccines. Human Vaccines and Immunotherapeutics, 2015, 11, 2495-2500.	1.4	49
32	Complete genome sequence of hypervirulent and outbreak-associated Acinetobacter baumannii strain LAC-4: epidemiology, resistance genetic determinants and potential virulence factors. Scientific Reports, 2015, 5, 8643.	1.6	132
33	Intranasal immunization protects against Acinetobacter baumannii-associated pneumonia in mice. Vaccine, 2015, 33, 260-267.	1.7	37
34	Serum resistance, gallium nitrate tolerance and extrapulmonary dissemination are linked to heme consumption in a bacteremic strain of Acinetobacter baumannii. International Journal of Medical Microbiology, 2014, 304, 360-369.	1.5	43
35	A Mouse Model of Acinetobacter baumannii-Associated Pneumonia Using a Clinically Isolated Hypervirulent Strain. Antimicrobial Agents and Chemotherapy, 2013, 57, 3601-3613.	1.4	114
36	Chemical Synthesis and Immunological Evaluation of the Inner Core Oligosaccharide of Francisella tularensis. Journal of the American Chemical Society, 2012, 134, 14255-14262.	6.6	54

#	Article	IF	CITATIONS
37	Role of Macrophages in Early Host Resistance to Respiratory Acinetobacter baumannii Infection. PLoS ONE, 2012, 7, e40019.	1.1	111
38	In VitroandIn VivoBiological Activities of Iron Chelators and Gallium Nitrate against Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2012, 56, 5397-5400.	1.4	71
39	c-di-GMP protects against intranasal Acinetobacter baumannii infection in mice by chemokine induction and enhanced neutrophil recruitment. International Immunopharmacology, 2011, 11, 1378-1383.	1.7	25
40	Acinetobacter baumannii Infection Inhibits Airway Eosinophilia and Lung Pathology in a Mouse Model of Allergic Asthma. PLoS ONE, 2011, 6, e22004.	1.1	23
41	Infection of Mice with <i>Francisella</i> as an Immunological Model. Current Protocols in Immunology, 2011, 93, Unit 19.14.	3.6	35
42	Role of neutrophils and NADPH phagocyte oxidase in host defense against respiratory infection with virulent Francisella tularensis in mice. Microbes and Infection, 2011, 13, 447-456.	1.0	29
43	Archaeal lipid mucosal vaccine adjuvant and delivery system. Expert Review of Vaccines, 2010, 9, 431-440.	2.0	21
44	Molecular Immune Responses to Aerosol Challenge with Francisella tularensis in Mice Inoculated with Live Vaccine Candidates of Varying Efficacy. PLoS ONE, 2010, 5, e13349.	1.1	55
45	Intranasal Immunization with an Archaeal Lipid Mucosal Vaccine Adjuvant and Delivery Formulation Protects against a Respiratory Pathogen Challenge. PLoS ONE, 2010, 5, e15574.	1.1	17
46	Recent advances in the development of novel mucosal adjuvants and antigen delivery systems. Hum Vaccin, 2010, 6, 706-714.	2.4	36
47	Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria: Effects of host background and route of immunization. Vaccine, 2010, 28, 1824-1831.	1.7	60
48	The potential of 3′,5′-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine, 2010, 28, 3080-3085.	1.7	79
49	3′,5′-Cyclic diguanylic acid: a small nucleotide that makes big impacts. Chemical Society Reviews, 2010, 39, 2914.	18.7	42
50	Role of NADPH Phagocyte Oxidase in Host Defense against Acute Respiratory <i>Acinetobacter baumannii</i> Infection in Mice. Infection and Immunity, 2009, 77, 1015-1021.	1.0	69
51	High susceptibility to respiratory Acinetobacter baumannii infection in A/J mice is associated with a delay in early pulmonary recruitment of neutrophils. Microbes and Infection, 2009, 11, 946-955.	1.0	63
52	The structure of the polysaccharide O-chain of the LPS from Acinetobacter baumannii strain ATCC 17961. Carbohydrate Research, 2009, 344, 474-478.	1.1	21
53	3′,5′-Cyclic diguanylic acid elicits mucosal immunity against bacterial infection. Biochemical and Biophysical Research Communications, 2009, 387, 581-584.	1.0	50
54	Pentabody-mediated antigen delivery induces antigen-specific mucosal immune response. Molecular Immunology, 2009, 46, 1718-1726.	1.0	14

#	Article	IF	CITATIONS
55	Synthesis and immunostimulatory properties of the phosphorothioate analogues of cdiGMP. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5631-5634.	1.0	54
56	Structural Characterization of Archaeal Lipid Mucosal Vaccine Adjuvant and Delivery (AMVAD) Formulations Prepared by Different Protocols and Their Efficacy Upon Intranasal Immunization of Mice. Journal of Liposome Research, 2008, 18, 127-143.	1.5	14
57	Molecular immunology of experimental primary tularemia in mice infected by respiratory or intradermal routes with type A Francisella tularensis. Molecular Immunology, 2008, 45, 2962-2969.	1.0	41
58	M cell-targeted delivery of vaccines and therapeutics. Expert Opinion on Drug Delivery, 2008, 5, 693-702.	2.4	49
59	Safety of Intranasally Administered Archaeal Lipid Mucosal Vaccine Adjuvant and Delivery (AMVAD) Vaccine in Mice. International Journal of Toxicology, 2008, 27, 329-339.	0.6	25
60	Lymphotoxin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi>Plays Only a Minor Role in Host Resistance to Respiratory Infection with Virulent Type A<i>Francisella tularensis</i>in Mice. Mediators of Inflammation, 2008, 2008, 1-6.</mml:math 	1.4	3
61	Non-antibiotic strategies for the prevention/treatment ofClostridium difficileinfection. Expert Opinion on Therapeutic Patents, 2008, 18, 1395-1403.	2.4	1
62	Neutrophils Play an Important Role in Host Resistance to Respiratory Infection with <i>Acinetobacter baumannii</i> in Mice. Infection and Immunity, 2007, 75, 5597-5608.	1.0	193
63	Oral immunization of mice with the live vaccine strain (LVS) of Francisella tularensis protects mice against respiratory challenge with virulent type A F. tularensis. Vaccine, 2007, 25, 3781-3791.	1.7	45
64	Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine, 2007, 25, 8622-8636.	1.7	52
65	Vaccines and therapeutic agents for tularemia. Expert Opinion on Therapeutic Patents, 2007, 17, 267-275.	2.4	2
66	Virulence comparison in mice of distinct isolates of type A Francisella tularensis. Microbial Pathogenesis, 2006, 40, 133-138.	1.3	39
67	Transcriptional profiling of host responses in mouse lungs following aerosol infection with type A Francisella tularensis. Journal of Medical Microbiology, 2006, 55, 263-271.	0.7	58
68	Role of Toll-like receptors in health and diseases of gastrointestinal tract. World Journal of Gastroenterology, 2006, 12, 2149.	1.4	95
69	Toll-like receptor 4 (TLR4) plays a relatively minor role in murine defense against primary intradermal infection with Francisella tularensis LVS. Immunology Letters, 2005, 97, 151-154.	1.1	31
70	Therapeutic potential of microbes and microbial products in the management of human allergic asthma. Expert Opinion on Therapeutic Patents, 2005, 15, 789-799.	2.4	0
71	Archaeosome Immunostimulatory Vaccine Delivery System. Current Drug Delivery, 2005, 2, 407-421.	0.8	41
72	A Mutant of Francisella tularensis Strain SCHU S4 Lacking the Ability To Express a 58-Kilodalton Protein Is Attenuated for Virulence and Is an Effective Live Vaccine. Infection and Immunity, 2005, 73, 8345-8352.	1.0	144

#	Article	IF	CITATIONS
73	Low dose aerosol infection of mice with virulent type A Francisella tularensis induces severe thymus atrophy and CD4+CD8+ thymocyte depletion. Microbial Pathogenesis, 2005, 39, 189-196.	1.3	54
74	Aerosol-, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an I±Î² T cell- and interferon gamma- dependent mechanism. Vaccine, 2005, 23, 2477-2485.	1.7	102
75	Distinct Roles of Reactive Nitrogen and Oxygen Species To Control Infection with the Facultative Intracellular Bacterium Francisella tularensis. Infection and Immunity, 2004, 72, 7172-7182.	1.0	69
76	Susceptibility of immunodeficient mice to aerosol and systemic infection with virulent strains of Francisella tularensis. Microbial Pathogenesis, 2004, 36, 311-318.	1.3	65
77	Toll-like receptor 4 (TLR4) does not confer a resistance advantage on mice against low-dose aerosol infection with virulent type A Francisella tularensis. Microbial Pathogenesis, 2004, 37, 185-191.	1.3	50
78	Tularemia in BALB/c and C57BL/6 mice vaccinated with Francisella tularensis LVS and challenged intradermally, or by aerosol with virulent isolates of the pathogen: protection varies depending on pathogen virulence, route of exposure, and host genetic background. Vaccine, 2003, 21, 3690-3700.	1.7	107
79	Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microbial Pathogenesis, 2003, 34, 239-248.	1.3	156
80	Novel cancer vaccines: an update. Expert Opinion on Therapeutic Patents, 2003, 13, 1787-1799.	2.4	0
81	Detection ofChlamydia pneumoniaeby polymerase chain reaction-enzyme immunoassay in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. Journal of Gastroenterology and Hepatology (Australia), 2002, 17, 987-993.	1.4	23
82	Reduced colonization of gastric mucosa by Helicobacter pylori in mice deficient in interleukin-101. Journal of Gastroenterology and Hepatology (Australia), 2001, 16, 377-383.	1.4	70
83	High prevalence of Mycoplasma pneumoniae in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. Digestive Diseases and Sciences, 2001, 46, 2529-2535.	1.1	24
84	Dendritic cellâ€based cancer immunotherapy: Potential for treatment of colorectal cancer?. Journal of Gastroenterology and Hepatology (Australia), 2000, 15, 698-705.	1.4	23
85	Inhibition of mitogenâ€induced murine lymphocyte proliferation byHelicobacter pyloricellâ€free extract. Journal of Gastroenterology and Hepatology (Australia), 2000, 15, 1000-1006.	1.4	8
86	Detection of Listeria monocytogenes by polymerase chain reaction in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. Journal of Gastroenterology and Hepatology (Australia), 2000, 15, 1145-1150.	1.4	54
87	Novel anti-Helicobacter pylori agents. Expert Opinion on Therapeutic Patents, 2000, 10, 1221-1232.	2.4	2
88	Identification of an immunogenic 18-kDa protein of Helicobacter pylori by alkaline phosphatase gene fusions. Journal of Medical Microbiology, 2000, 49, 643-650.	0.7	4
89	IL-4, IL-5 and IL-10 are not required for the control ofM. bovis-BCG infection in mice. Immunology and Cell Biology, 1998, 76, 41-46.	1.0	40