Fumiyoshi Myouga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7639797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of photosystem II assembly complexes containing ONE-HELIX PROTEIN1 in Arabidopsis thaliana. Journal of Plant Research, 2022, 135, 361.	1.2	1
2	Stable Accumulation of Photosystem II Requires ONE-HELIX PROTEIN1 (OHP1) of the Light Harvesting-Like Family. Plant Physiology, 2018, 176, 2277-2291.	2.3	54
3	<i>HEAT INDUCIBLE LIPASE1</i> Remodels Chloroplastic Monogalactosyldiacylglycerol by Liberating α-Linolenic Acid in Arabidopsis Leaves under Heat Stress. Plant Cell, 2018, 30, 1887-1905.	3.1	71
4	SNACâ€As, stressâ€responsive NAC transcription factors, mediate ABAâ€inducible leaf senescence. Plant Journal, 2015, 84, 1114-1123.	2.8	202
5	Bending of Protonema Cells in a Plastid Glycolate/Glycerate Transporter Knockout Line of Physcomitrella patens. PLoS ONE, 2015, 10, e0118804.	1.1	6
6	Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Scientific Reports, 2015, 5, 10533.	1.6	171
7	Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins. Plant Molecular Biology, 2014, 85, 411-428.	2.0	48
8	The Chloroplast Function Database II: A Comprehensive Collection of Homozygous Mutants and Their Phenotypic/Genotypic Traits for Nuclear-Encoded Chloroplast Proteins. Plant and Cell Physiology, 2013, 54, e2-e2.	1.5	34
9	Loss of the Plastid Envelope Protein AtLrgB Causes Spontaneous Chlorotic Cell Death in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 125-134.	1.5	24
10	Identification of Nuclear Genes Encoding Chloroplast-Localized Proteins Required for Embryo Development in Arabidopsis Â. Plant Physiology, 2011, 155, 1678-1689.	2.3	232
11	A Chaperonin Subunit with Unique Structures Is Essential for Folding of a Specific Substrate. PLoS Biology, 2011, 9, e1001040.	2.6	78
12	The pentatricopeptide repeat protein OTP82 is required for RNA editing of plastid ndhB and ndhG transcripts. Plant Journal, 2010, 61, 339-349.	2.8	92
13	The Chloroplast Function Database: a largeâ€scale collection of Arabidopsis <i>Ds/Spm</i> ―or Tâ€DNAâ€ŧagged homozygous lines for nuclearâ€encoded chloroplast proteins, and their systematic phenotype analysis. Plant Journal, 2010, 61, 529-542.	2.8	60
14	LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16721-16725.	3.3	98
15	Evolutionary Persistence of Functional Compensation by Duplicate Genes in Arabidopsis. Genome Biology and Evolution, 2009, 1, 409-414.	1.1	81
16	Increased Expression and Protein Divergence in Duplicate Genes Is Associated with Morphological Diversification. PLoS Genetics, 2009, 5, e1000781.	1.5	50
17	Pentatricopeptide Repeat Proteins with the DYW Motif Have Distinct Molecular Functions in RNA Editing and RNA Cleavage in <i>Arabidopsis</i> Chloroplasts. Plant Cell, 2009, 21, 146-156.	3.1	226
18	Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17588-17593.	3.3	980

FUMIYOSHI MYOUGA

#	Article	IF	CITATIONS
19	An <i>Arabidopsis</i> homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development. Plant Journal, 2008, 53, 924-934.	2.8	87
20	CRR23/NdhL is a Subunit of the Chloroplast NAD(P)H Dehydrogenase Complex in Arabidopsis. Plant and Cell Physiology, 2008, 49, 835-842.	1.5	71
21	A Heterocomplex of Iron Superoxide Dismutases Defends Chloroplast Nucleoids against Oxidative Stress and Is Essential for Chloroplast Development in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 3148-3162.	3.1	270
22	Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8178-8183.	3.3	280
23	Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development. Plant Molecular Biology, 2007, 64, 481-497.	2.0	55
24	An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response. Plant Journal, 2006, 48, 249-260.	2.8	81
25	Identification and structural analysis of SINE elements in the Arabidopsis thaliana genome Genes and Genetic Systems, 2001, 76, 169-179.	0.2	28
26	Genomic Differences inStreptococcus pyogenesSerotype M3 between Recent Isolates Associated with Toxic Shock–Like Syndrome and Past Clinical Isolates. Journal of Infectious Diseases, 2000, 181, 975-983.	1.9	21
27	Genetic and immunological analyses of Vls (VMP-like sequences) ofBorrelia burgdorferi. Microbial Pathogenesis, 1998, 24, 155-166.	1.3	34
28	Detection of New DNA Fragments Integrated on the Genome of M1 and M3 Group A Streptococci from Streptococcal Toxic Shock-Like Syndrome. Advances in Experimental Medicine and Biology, 1997, 418, 63-65.	0.8	1