
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7639728/publications.pdf Version: 2024-02-01

SHI TAO

#	Article	IF	CITATIONS
1	Structural investigation of metallic Ni nanoparticles with N-doped carbon for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 429, 132122.	6.6	35
2	Nickel–salen as a model for bifunctional OER/UOR electrocatalysts: pyrolysis temperature–electrochemical activity interconnection. Inorganic Chemistry Frontiers, 2022, 9, 1973-1983.	3.0	8
3	Core–shell structured SnSe@C microrod for Na-ion battery anode. Journal of Energy Chemistry, 2021, 55, 256-264.	7.1	61
4	MnSe nanoparticles encapsulated into N-doped carbon fibers with a binder-free and free-standing structure for lithium ion batteries. Ceramics International, 2021, 47, 1429-1438.	2.3	27
5	Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries. Journal of Materials Science and Technology, 2021, 74, 230-236.	5.6	18
6	One dimensional SbO ₂ /Sb ₂ O ₃ @NC microrod as anode for lithiumâ€ion and sodiumâ€ion batteries. Nano Select, 2021, 2, 425-432.	1.9	9
7	The lithium ion storage performance of ZnSe particles with stable electrochemical reaction interfaces improved by carbon coating. Journal of Physics and Chemistry of Solids, 2021, 152, 109987.	1.9	7
8	Dynamic structural evolution of oxygen vacancies in lithium rich layered composites cathodes for Li-ion batteries. Materials Today Physics, 2021, 18, 100403.	2.9	8
9	Soybean roots-derived N, P Co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries. Carbon, 2021, 178, 233-242.	5.4	61
10	Regulating the electronic structure of CoP nanoflowers by molybdenum incorporation for enhanced lithium and sodium storage. Journal of Power Sources, 2021, 500, 229975.	4.0	15
11	Long-range ordering and local structural disordering of BiAgSe2 and BiAgSeTe thermoelectrics. Physical Chemistry Chemical Physics, 2021, 23, 24328-24335.	1.3	1
12	Formation of Nitrogenâ€Doped Carbonâ€Coated CoP Nanoparticles Embedded within Graphene Oxide for Lithiumâ€lon Batteries Anode. Energy Technology, 2020, 8, 1901089.	1.8	22
13	Rational design of hierarchical FeSe ₂ encapsulated with bifunctional carbon cuboids as an advanced anode for sodium-ion batteries. Nanoscale, 2020, 12, 22210-22216.	2.8	26
14	NaBH ₄ induces a high ratio of Ni ³⁺ /Ni ²⁺ boosting OER activity of the NiFe LDH electrocatalyst. RSC Advances, 2020, 10, 33475-33482.	1.7	62
15	Metal-organic framework-derived Ni2P/nitrogen-doped carbon porous spheres for enhanced lithium storage. Science China Materials, 2020, 63, 1672-1682.	3.5	18
16	Design and synthesis of dendritic Co3O4@Co2(CO3)(OH)2 nanoarrays on carbon cloth for high-performance supercapacitors. Journal of Materials Science, 2020, 55, 12091-12102.	1.7	33
17	MOF-derived ultrasmall CoSe ₂ nanoparticles encapsulated by an N-doped carbon matrix and their superior lithium/sodium storage properties. Chemical Communications, 2020, 56, 9218-9221.	2.2	24
18	<i>In situ</i> synthesis of ultrasmall MnO nanoparticles encapsulated by a nitrogen-doped carbon matrix for high-performance lithium-ion batteries. Chemical Communications, 2019, 55, 9184-9187.	2.2	17

#	Article	IF	CITATIONS
19	Synergistic Effect on the Improved Electrochemical Performance in the Case of Fe _{1–<i>x</i>} Cd _{<i>x</i>} CO ₃ . Journal of Physical Chemistry C, 2019, 123, 19333-19339.	1.5	5
20	Facile synthesis of tin phosphide/reduced graphene oxide composites as anode material for potassium-ion batteries. Ionics, 2019, 25, 4795-4803.	1.2	27
21	Ultrafine Co ₃ O ₄ Nanoparticles within Nitrogenâ€Doped Carbon Matrix Derived from Metal–Organic Complex for Boosting Lithium Storage and Oxygen Evolution Reaction. Small, 2019, 15, e1904260.	5.2	23
22	Encapsulating Carbonâ€Coated MoS ₂ Nanosheets within a Nitrogenâ€Doped Graphene Network for Highâ€Performance Potassiumâ€lon Storage. Advanced Materials Interfaces, 2019, 6, 1901066.	1.9	36
23	Metalâ€Organicâ€Frameworkâ€Derived FeSe ₂ @Carbon Embedded into Nitrogenâ€Doped Graphene Sheets with Binary Conductive Networks for Rechargeable Batteries. ChemElectroChem, 2019, 6, 2805-2811.	1.7	17
24	Hierarchical Ni(HCO ₃) ₂ Nanosheets Anchored on Carbon Nanofibers as Binderâ€Free Anodes for Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1900094.	1.8	10
25	MOFs derived Co1â^'S nanoparticles embedded in N-doped carbon nanosheets with improved electrochemical performance for lithium ion batteries. Applied Surface Science, 2019, 479, 693-699.	3.1	35
26	Lithium storage mechanisms of CdSe nanoparticles with carbon modification for advanced lithium ion batteries. Chemical Communications, 2019, 55, 2996-2999.	2.2	23
27	Potassiumâ€Ion Batteries: Encapsulating Carbon oated MoS ₂ Nanosheets within a Nitrogenâ€Đoped Graphene Network for Highâ€Performance Potassiumâ€Ion Storage (Adv. Mater. Interfaces) Tj I	E TQ q110). 0 84314 rg
28	Facile synthesis of CdCO3 cubic particles/graphene composite with enhanced electrochemical performance for lithium-ion batteries. Materials Letters, 2019, 236, 672-675.	1.3	9
29	Nano-sized FeSe2 anchored on reduced graphene oxide as a promising anode material for lithium-ion and sodium-ion batteries. Journal of Materials Science, 2019, 54, 4225-4235.	1.7	74
30	Porous CoP/C@MCNTs hybrid composite derived from metal–organic frameworks for high-performance lithium-ion batteries. Journal of Materials Science, 2019, 54, 3273-3283.	1.7	29
31	Three-dimensional hollow spheres of the tetragonal-spinel MgMn ₂ O ₄ cathode for high-performance magnesium ion batteries. Journal of Materials Chemistry A, 2018, 6, 8210-8214.	5.2	52
32	Atomically Intercalating Tin Ions into the Interlayer of Molybdenum Oxide Nanobelt toward Long-Cycling Lithium Battery. Journal of Physical Chemistry Letters, 2018, 9, 817-824.	2.1	39
33	Ball-in-ball hierarchical design of P2-type layered oxide as high performance Na-ion battery cathodes. Electrochimica Acta, 2018, 265, 284-291.	2.6	12
34	Graphite modified AlNbO 4 with enhanced lithium — Ion storage behaviors and its electrochemical mechanism. Materials Research Bulletin, 2018, 97, 405-410.	2.7	14
35	A versatile strategy for ultrathin SnS ₂ nanosheets confined in a N-doped graphene sheet composite for high performance lithium and sodium-ion batteries. Chemical Communications, 2018, 54, 8379-8382.	2.2	43
36	Multiwalled carbon nanotube-modified Nb2O5 with enhanced electrochemical performance for lithium-ion batteries. Ceramics International, 2018, 44, 23226-23231.	2.3	23

#	Article	IF	CITATIONS
37	Facile synthesis of MTaO4 (M = Al, Cr and Fe) metal oxides and their application as anodes for lithium-ion batteries. Ceramics International, 2018, 44, 8827-8831.	2.3	7
38	Hierarchical Co2P microspheres assembled from nanorods grown on reduced graphene oxide as anode material for Lithium-ion batteries. Applied Surface Science, 2018, 459, 665-671.	3.1	25
39	Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. Journal of Alloys and Compounds, 2017, 705, 413-419.	2.8	79
40	Electron-Doped 1T-MoS ₂ via Interface Engineering for Enhanced Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2017, 29, 4738-4744.	3.2	270
41	Vertical 1T-MoS ₂ nanosheets with expanded interlayer spacing edged on a graphene frame for high rate lithium-ion batteries. Nanoscale, 2017, 9, 6975-6983.	2.8	158
42	Facile synthesis silkworm-like Ni-rich layered LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Materials Letters, 2017, 201, 1-4.	1.3	23
43	Understanding Structure-Dependent Catalytic Performance of Nickel Selenides for Electrochemical Water Oxidation. ACS Catalysis, 2017, 7, 310-315.	5.5	155
44	Stable 1T-MoSe ₂ and Carbon Nanotube Hybridized Flexible Film: Binder-Free and High-Performance Li-Ion Anode. ACS Nano, 2017, 11, 6483-6491.	7.3	135
45	Co-precipitation synthesis and electrochemical properties of CrNbO4 anode materials for lithium-ion batteries. Materials Letters, 2017, 196, 335-338.	1.3	9
46	Enhanced Electrochemical Performance of Tiâ€Doping Li _{1.} <scp>₁₅Ni₀</scp> _. <scp>₄₇Sb_{0as Lithiumâ€excess Cathode for Lithiumâ€ion Batteries. Chinese Journal of Chemistry, 2017, 35, 1853-1860.}</scp>	b> 2/6 cp><	su b >.<
47	Formation of graphene-encapsulated CoS ₂ hybrid composites with hierarchical structures for high-performance lithium-ion batteries. RSC Advances, 2017, 7, 39427-39433.	1.7	26
48	Preparation and characterization of nano-sized FeTaO 4 /graphite for lithium-ion batteries. Solid State Ionics, 2017, 313, 45-51.	1.3	5
49	Enhanced electrochemical performance of MoO3-coated LiMn2O4 cathode for rechargeable lithium-ion batteries. Materials Chemistry and Physics, 2017, 199, 203-208.	2.0	17
50	Back Cover: Enhanced Electrochemical Performance of Ti-Doping Li1. 15 Ni0 . 47 Sb0 . 38 O2 as Lithium-excess Cathode for Lithium-ion Batteries (Chin. J. Chem. 12/2017). Chinese Journal of Chemistry, 2017, 35, 1902-1902.	2.6	0
51	Phaseâ€Transformation Engineering in Cobalt Diselenide Realizing Enhanced Catalytic Activity for Hydrogen Evolution in an Alkaline Medium. Advanced Materials, 2016, 28, 7527-7532.	11.1	307
52	Singleâ€Atom Pt as Co atalyst for Enhanced Photocatalytic H ₂ Evolution. Advanced Materials, 2016, 28, 2427-2431.	11.1	1,156
53	Layered Li2RuO3–LiCoO2 composite as high-performance cathode materials for lithium-ion batteries. Materials Letters, 2016, 179, 34-37.	1.3	13
54	Fabrication of graphene-encapsulated Na ₃ V ₂ (PO ₄) ₃ as high-performance cathode materials for sodium-ion batteries. RSC Advances, 2016, 6, 43591-43597.	1.7	39

#	Article	IF	CITATIONS
55	Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 12465-12469.	7.2	356
56	Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2016, 3, 236-242.	3.0	243
57	Sol–gel design strategy for embedded Na3V2(PO4)3 particles into carbon matrices for high-performance sodium-ion batteries. Carbon, 2016, 96, 1028-1033.	5.4	77
58	Phase Separations in LiFe _{1–<i>x</i>} Mn _{<i>x</i>} PO ₄ : A Random Stack Model for Efficient Cathode Materials. Journal of Physical Chemistry C, 2014, 118, 796-803.	1.5	31
59	Performance enhancement of Lithium-ion battery with LiFePO4@C/RGO hybrid electrode. Electrochimica Acta, 2014, 144, 406-411.	2.6	27
60	Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries. Scientific Reports, 2014, 4, 4188.	1.6	75