Norman G Lederman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7639600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comprehensive Review of Instruments Measuring Attitudes Toward Science. Research in Science Education, 2022, 52, 567-582.	2.3	17
2	Views About Scientific Inquiry: A Study of Students' Understanding of Scientific Inquiry in Grade 7 and 12 in Sweden. Scandinavian Journal of Educational Research, 2022, 66, 336-354.	1.7	11
3	International collaborative follow-up investigation of graduating high school students' understandings of the nature of scientific inquiry: is progress Being made?. International Journal of Science Education, 2021, 43, 991-1016.	1.9	18
4	Investigating the development of secondary students' views about scientific inquiry. International Journal of Science Education, 2020, 42, 906-933.	1.9	11
5	Passing the Torch; and, A Word from the Incoming Co-Editors-in-Chief. Journal of Science Teacher Education, 2019, 30, 1-5.	2.5	Ο
6	Teaching and Learning of Nature of Scientific Knowledge and Scientific Inquiry: Building Capacity through Systematic Research-Based Professional Development. Journal of Science Teacher Education, 2019, 30, 737-762.	2.5	16
7	Development of the instrument of question-answer process (IQAP) and its application in examining salient characteristics between pre- and in-service teachers in senior high school chemistry class. International Journal of Science Education, 2019, 41, 1228-1245.	1.9	3
8	An international collaborative investigation of beginning seventh grade students' understandings of scientific inquiry: Establishing a baseline. Journal of Research in Science Teaching, 2019, 56, 486-515.	3.3	52
9	Understandings of Scientific Inquiry: An International Collaborative Investigation of Grade Seven Students. Contributions From Science Education Research, 2019, , 189-201.	0.5	1
10	Professional Citizenship. Journal of Science Teacher Education, 2018, 29, 551-554.	2.5	0
11	Monitoring and Acting on the Winds of Change. Journal of Science Teacher Education, 2018, 29, 347-352.	2.5	0
12	Improving Chinese junior high school students' ability to ask critical questions. Journal of Research in Science Teaching, 2017, 54, 963-987.	3.3	12
13	The Future of Peer Review. Journal of Science Teacher Education, 2017, 28, 219-221.	2.5	3
14	The Education and Evaluation of Effective Teaching: The Continuing Challenge for Teacher Educators and Schools of Education. Journal of Science Teacher Education, 2017, 28, 567-573.	2.5	4
15	Arguing About Arguing. Journal of Science Teacher Education, 2017, 28, 143-145.	2.5	Ο
16	ls Transparency Important in 2017? Yes, Even More Than Ever. Journal of Science Teacher Education, 2017, 28, 319-325.	2.5	0
17	The <i>Journal of Science Teacher Education</i> on the European Stage. Journal of Science Teacher Education, 2017, 28, 403-405.	2.5	0
18	Learning experimentation through science fairs. International Journal of Science Education, 2016, 38, 2367-2387.	1.9	32

#	Article	IF	CITATIONS
19	USING SCIENCE CAMPS TO DEVELOP UNDERSTANDINGS ABOUT SCIENTIFIC INQUIRYâ€"TAIWANESE STUDENTS IN A U.S. SUMMER SCIENCE CAMP. International Journal of Science and Mathematics Education, 2016, 14, 29-53.	2.5	24
20	Mendelian Genetics as a Platform for Teaching About Nature of Science and Scientific Inquiry: The Value of Textbooks. Science and Education, 2015, 24, 205-225.	2.7	32
21	Knowledge about Inquiry: A study in South African high schools. International Journal of Science Education, 2014, 36, 3125-3147.	1.9	34
22	Comfort and Content: Considerations for Informal Science Professional Development. International Journal of Science Education, Part B: Communication and Public Engagement, 2014, 4, 356-375.	1.5	6
23	Nature of Science, Scientific Inquiry, and Socio-Scientific Issues Arising from Genetics: A Pathway to Developing a Scientifically Literate Citizenry. Science and Education, 2014, 23, 285-302.	2.7	156
24	Meaningful assessment of learners' understandings about scientific inquiry-The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 2014, 51, 65-83.	3.3	237
25	Teachers' knowledge structures for nature of science and scientific inquiry: Conceptions and classroom practice. Journal of Research in Science Teaching, 2014, 51, 1150-1184.	3.3	82
26	Informal Science Educators' Views about Nature of Scientific Knowledge. International Journal of Science Education, Part B: Communication and Public Engagement, 2014, 4, 123-146.	1.5	8
27	A series of misrepresentations: A response to Allchin's whole approach to assessing nature of science understandings. Science Education, 2012, 96, 685-692.	3.0	61
28	Teaching nature of science within a controversial topic: Integrated versus nonintegrated. Journal of Research in Science Teaching, 2006, 43, 395-418.	3.3	209
29	Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science Education, 2004, 88, 610-645.	3.0	538
30	Just do it? impact of a science apprenticeship program on high school students' understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 2003, 40, 487-509.	3.3	368
31	Understandings of the nature of science and decision making on science and technology based issues. Science Education, 2003, 87, 352-377.	3.0	301
32	Science teachers' diagnosis and understanding of students' preconceptions. Science Education, 2003, 87, 849-867.	3.0	96
33	Influence of a Reflective Explicit Activity-Based Approach on Elementary Teachers' Conceptions of Nature of Science. Journal of Research in Science Teaching, 2000, 37, 295-317.	3.3	433
34	Developing and acting upon one's conception of the nature of science: A follow-up study. Journal of Research in Science Teaching, 2000, 37, 563-581.	3.3	196
35	The influence of history of science courses on students' views of nature of science. Journal of Research in Science Teaching, 2000, 37, 1057-1095.	3.3	430
36	Improving science teachers' conceptions of nature of science: a critical review of the literature. International Journal of Science Education, 2000, 22, 665-701.	1.9	833

Norman G Lederman

#	Article	IF	CITATIONS
37	Developing and acting upon one's conception of the nature of science: A followâ€up study. Journal of Research in Science Teaching, 2000, 37, 563-581.	3.3	2
38	The influence of history of science courses on students' views of nature of science. Journal of Research in Science Teaching, 2000, 37, 1057-1095.	3.3	7
39	Teachers' understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 1999, 36, 916-929.	3.3	399
40	Assessing the Nature of Science: What is the Nature of Our Assessments?. Science and Education, 1998, 7, 595-615.	2.7	85
41	The nature of science and instructional practice: Making the unnatural natural. Science Education, 1998, 82, 417-436.	3.0	690
42	Implicit versus explicit nature of science instruction: An explicit response to Palmquist and Finley. Journal of Research in Science Teaching, 1998, 35, 1057-1061.	3.3	64
43	The nature of science and instructional practice: Making the unnatural natural. , 1998, 82, 417.		3
44	Implicit versus explicit nature of science instruction: An explicit response to Palmquist and Finley. Journal of Research in Science Teaching, 1998, 35, 1057-1061.	3.3	1
45	Suchting on the nature of scientific thought: Are we anchoring curricula in quicksand?. Science and Education, 1995, 4, 371-377.	2.7	22
46	Biology teachers' perceptions of subject matter structure and its relationship to classroom practice. Journal of Research in Science Teaching, 1995, 32, 301-325.	3.3	101
47	The nature and development of preservice science teachers' conceptions of subject matter and pedagogy. Journal of Research in Science Teaching, 1994, 31, 129-146.	3.3	147
48	The effect of levels of cooperation within physical science laboratory groups on physical science achievement. Journal of Research in Science Teaching, 1994, 31, 167-181.	3.3	45
49	Preservice biology teachers' knowledge structures as a function of professional teacher education: A year-long assessment. Science Education, 1993, 77, 25-45.	3.0	109
50	Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 1992, 29, 331-359.	3.3	1,419
51	You can't do it by arithmetic, you have to do it by algebra!. Journal of Research in Science Teaching, 1992, 29, 1011-1013.	3.3	0
52	Fallacies and student discourse: Conceptualizing the role of critical thinking in science education. Science Education, 1992, 76, 437-450.	3.0	44
53	Metamorphosis, adaptation, or evolution?: Preservice science teachers' concerns and perceptions of teaching and planning. Science Education, 1991, 75, 443-456.	3.0	29
54	Students' perceptions of tentativeness in science: Development, use, and sources of change. Science Education, 1990, 74, 225-239.	3.0	234

Norman G Lederman

#	Article	IF	CITATIONS
55	The preservice microteaching course and science teachers' instructional decisions: A qualitative analysis. Journal of Research in Science Teaching, 1990, 27, 717-726.	3.3	15
56	The effect of teachers' language on students' conceptions of the nature of science. Journal of Research in Science Teaching, 1989, 26, 771-783.	3.3	65
57	Science teachers' conceptions of the nature of science: Do they really influence teaching behavior?. Science Education, 1987, 71, 721-734.	3.0	201
58	Classroom factors related to changes in students' conceptions of the nature of science. Journal of Research in Science Teaching, 1985, 22, 649-662.	3.3	46
59	Estágio com Pesquisa na Formação Inicial de Professores: transformação dos sentidos sobre a atividade docente. Ciência & Educação, 0, 27, .	0.4	2
60	VASI Questionnaire in the context of Brazilian Secondary Education: an Analysis of the Students' Understanding of Scientific Inquiry. Ciência & EducaçA£o, 0, 26, .	0.4	2
61	Understandings About Scientific Inquiry in a South African School Prioritizing STEM. African Journal of Research in Mathematics, Science and Technology Education, 0, , 1-11.	1.0	1