Wonyoung Choe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7639478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tetrazoleâ€Based Energetic Metalâ€Organic Frameworks: Impacts of Metals and Ligands on Explosive Properties. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	7
2	Modulating Energetic Characteristics of Multicomponent 1D Coordination Polymers: Interplay of Metal–Ligand Coordination Modes. Inorganic Chemistry, 2022, 61, 1881-1887.	1.9	5
3	Synthesis of α,β-unsaturated ketones through nickel-catalysed aldehyde-free hydroacylation of alkynes. Communications Chemistry, 2022, 5, .	2.0	8
4	Mining Insights on Metal–Organic Framework Synthesis from Scientific Literature Texts. Journal of Chemical Information and Modeling, 2022, 62, 1190-1198.	2.5	27
5	Topology-guided roadmap for reticular chemistry of metal-organic polyhedra. CheM, 2022, 8, 617-631.	5.8	10
6	Rapid access to polycyclic N-heteroarenes from unactivated, simple azines via a base-promoted Minisci-type annulation. Nature Communications, 2022, 13, 2421.	5.8	6
7	Understanding the Structural Collapse during Activation of Metal–Organic Frameworks with Copper Paddlewheels. Inorganic Chemistry, 2022, 61, 9702-9709.	1.9	2
8	Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry. Nano Research, 2021, 14, 392-397.	5.8	9
9	The rise of metal–organic polyhedra. Chemical Society Reviews, 2021, 50, 528-555.	18.7	133
10	Role of Zr ₆ Metal Nodes in Zr-Based Metal–Organic Frameworks for Catalytic Detoxification of Pesticides. Inorganic Chemistry, 2021, 60, 10249-10256.	1.9	8
11	Multivariate porous platform based on metal-organic polyhedra with controllable functionality assembly. Matter, 2021, 4, 2460-2473.	5.0	14
12	Adsorptive Removal of Industrial Dye by Nanoporous Zr porphyrinic Metal–Organic Framework Microcubes. ACS Applied Nano Materials, 2021, 4, 10068-10076.	2.4	18
13	PN-Doped tetraphenylnaphthalene: a straightforward synthetic strategy analogous to BN-annulation. Chemical Communications, 2021, 57, 12147-12150.	2.2	2
14	Impact of Zr ₆ Node in a Metal–Organic Framework for Adsorptive Removal of Antibiotics from Water. Inorganic Chemistry, 2021, 60, 16966-16976.	1.9	13
15	Trivalent copper and indium heterometallic complex with dithiocarbamate and iodide ligands. Journal of Molecular Structure, 2020, 1204, 127478.	1.8	6
16	Metal-organic frameworks as advanced adsorbents for pharmaceutical and personal care products. Coordination Chemistry Reviews, 2020, 425, 213526.	9.5	84
17	Unveiling 79‥earâ€Old Ixene and Its BNâ€Doped Derivative. Angewandte Chemie, 2020, 132, 15001-15005.	1.6	7
18	Unveiling 79â€Yearâ€Old Ixene and Its BNâ€Doped Derivative. Angewandte Chemie - International Edition, 2020–59–14891-14895	7.2	29

WONYOUNG CHOE

#	Article	IF	CITATIONS
19	Chemo- and regioselective click reactions through nickel-catalyzed azide–alkyne cycloaddition. Organic and Biomolecular Chemistry, 2020, 18, 3374-3381.	1.5	26
20	MOF × Biopolymer: Collaborative Combination of Metal–Organic Framework and Biopolymer for Advanced Anticancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 27512-27520.	4.0	123
21	Tuning of the flexibility in metal–organic frameworks based on pendant arm macrocycles. Chemical Communications, 2019, 55, 8832-8835.	2.2	16
22	Formation of trigons in a metal–organic framework: The role of metal–organic polyhedron subunits as meta-atoms. Chemical Science, 2019, 10, 6157-6161.	3.7	16
23	Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial. Science Advances, 2019, 5, eaav4119.	4.7	28
24	Chemoselective Trifluoroethylation Reactions of Quinazolinones and Identification of Photostability. Journal of Organic Chemistry, 2019, 84, 6737-6751.	1.7	26
25	MOP × MOF: Collaborative Combination of Metal–Organic Polyhedra and Metal–Organic Framework for Proton Conductivity. ACS Applied Materials & Interfaces, 2019, 11, 12639-12646.	4.0	45
26	Porous Zr6L3 Metallocage with Synergetic Binding Centers for CO2. ACS Applied Materials & Interfaces, 2018, 10, 8685-8691.	4.0	38
27	Molecular Engineered Safer Organic Battery through the Incorporation of Flame Retarding Organophosphonate Moiety. ACS Applied Materials & Interfaces, 2018, 10, 10096-10101.	4.0	5
28	Postsynthetic Linker Exchange in Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 143-182.	0.3	2
29	Organic Phototransistors Based on Selfâ€Assembled Microwires of <i>n</i> â€Type Distyrylbenzene Derivative. Asian Journal of Organic Chemistry, 2018, 7, 2302-2308.	1.3	4
30	An Annulative Synthetic Strategy for Building Triphenylene Frameworks by Multiple Câ^'H Bond Activations. Angewandte Chemie, 2017, 129, 5089-5093.	1.6	14
31	An Annulative Synthetic Strategy for Building Triphenylene Frameworks by Multiple Câ`'H Bond Activations. Angewandte Chemie - International Edition, 2017, 56, 5007-5011.	7.2	61
32	Evolution of form in metal–organic frameworks. Nature Communications, 2017, 8, 14070.	5.8	89
33	Cross-linking Zr-based metal–organic polyhedra via postsynthetic polymerization. Chemical Science, 2017, 8, 7765-7771.	3.7	122
34	Nickel-Catalyzed Azide–Alkyne Cycloaddition To Access 1,5-Disubstituted 1,2,3-Triazoles in Air and Water. Journal of the American Chemical Society, 2017, 139, 12121-12124.	6.6	127
35	Stepwise pillar insertion into metal–organic frameworks: a sequential self-assembly approach. CrystEngComm, 2012, 14, 6129.	1.3	54
36	Recent advances in porphyrinic metal–organic frameworks: materials design, synthetic strategies, and emerging applications. CrystEngComm, 2012, 14, 3839.	1.3	128

WONYOUNG CHOE

#	Article	IF	CITATIONS
37	Sequential self-assembly in metal–organic frameworks. Dalton Transactions, 2012, 41, 3889.	1.6	49
38	Stepwise Synthesis of Metal–Organic Frameworks: Replacement of Structural Organic Linkers. Journal of the American Chemical Society, 2011, 133, 9984-9987.	6.6	304
39	"Nanoscale Lattice Fence―in a Metal–Organic Framework: Interplay between Hinged Topology and Highly Anisotropic Thermal Response. Journal of the American Chemical Society, 2011, 133, 14848-14851.	6.6	137
40	A Bioinspired Synthetic Approach for Building Metalâ^'Organic Frameworks with Accessible Metal Centers. Inorganic Chemistry, 2010, 49, 10217-10219.	1.9	65
41	Self-Assembly and Properties of Nonmetalated Tetraphenyl-Porphyrin on Metal Substrates. Journal of Physical Chemistry C, 2010, 114, 9408-9415.	1.5	101
42	An Interdigitated Metalloporphyrin Framework: Two-Dimensional Tessellation, Framework Flexibility, and Selective Guest Accommodation. Crystal Growth and Design, 2010, 10, 171-176.	1.4	32
43	Classification of Structural Motifs in Porphyrinic Coordination Polymers Assembled from Porphyrin Building Units, 5,10,15,20-Tetrapyridylporphyrin and Its Derivatives. Journal of Chemical Crystallography, 2009, 39, 229-240.	0.5	57
44	Pillared Porphyrin Homologous Series: Intergrowth in Metalâ^'Organic Frameworks. Inorganic Chemistry, 2009, 48, 426-428.	1.9	167
45	Highly Tunable Heterometallic Frameworks Constructed from Paddle-Wheel Units and Metalloporphyrins. Crystal Growth and Design, 2009, 9, 1960-1965.	1.4	70
46	Structural Variation in Porphyrin Pillared Homologous Series: Influence of Distinct Coordination Centers for Pillars on Framework Topology. Crystal Growth and Design, 2009, 9, 3327-3332.	1.4	94
47	Metalâ^'Organic Framework Assembled from T-Shaped and Octahedral Nodes: A Mixed-Linker Strategy To Create a Rare Anatase TiO ₂ Topology. Inorganic Chemistry, 2009, 48, 9060-9062.	1.9	38
48	Highly tunable metal–organic frameworks with open metal centers. CrystEngComm, 2009, 11, 553-555.	1.3	197
49	A mixed-linker porphyrin framework with CdI2-type topology. CrystEngComm, 2008, 10, 824.	1.3	43
50	Gd5Si2Ge2 composite for magnetostrictive actuator applications. Applied Physics Letters, 2004, 84, 4801-4803.	1.5	15
51	Hollow and solid spherical magnetostrictive particulate composites. Journal of Applied Physics, 2004, 96, 3362-3365.	1.1	17
52	Forced volume magnetostriction in composite Gd 5 Si 2 Ge 2. , 2004, 5387, 64.		0
53	"Nanoscale Zippers―in the Crystalline Solid. Structural Variations in the Giant Magnetocaloric Material Gd5Si1.5Ge2.5. ChemInform, 2003, 34, no.	0.1	0
54	Anisotropy and large magnetoresistance in the narrow-gap semiconductorFeSb2. Physical Review B, 2003, 67, .	1.1	124

WONYOUNG CHOE

#	Article	IF	CITATIONS
55	Phase Transformation Driven by Valence Electron Concentration:Â Tuning Interslab Bond Distances in Gd5GaxGe4-x. Journal of the American Chemical Society, 2003, 125, 15183-15190.	6.6	59
56	"Nanoscale Zippers―in the Crystalline Solid. Structural Variations in the Giant Magnetocaloric Material Gd5Si1.5Ge2.5. Chemistry of Materials, 2003, 15, 1413-1419.	3.2	39
57	"Nanoscale Zippers―in Gd5(SixGe1-x)4: Symmetry and Chemical Influences on the Nanoscale Zipping Action. Inorganic Chemistry, 2003, 42, 8223-8229.	1.9	33
58	Temperature- and magnetic-field-induced phase transormation in bulk and cmoposite Gd 5 Si 2 Ge 2. , 2003, 5053, 25.		1
59	Microstructural analysis of twinnedβâ^'Gd5Si2Ge2. Physical Review B, 2002, 66, .	1.1	26
60	Gd2AlGe2: An "Almost-Zintl Phase―and a New Stacking Variant of the W2CoB2 TypeDedicated to Professor Welf Bronger on the Occasion of his 70th Birthday. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2002, 628, 1575.	0.6	12
61	Crystal structure and magnetism of Gd2MgGe2. Journal of Alloys and Compounds, 2001, 329, 121-130.	2.8	65
62	Making and Breaking Covalent Bonds across the Magnetic Transition in the Giant Magnetocaloric MaterialGd5(Si2Ge2). Physical Review Letters, 2000, 84, 4617-4620.	2.9	364
63	Coordination Networks of C3v and C2v Phenylacetylene Nitriles and Silver(I) Salts:  Interplay of Ligand Symmetry and Molecular Dipole Moments in the Solid State. Chemistry of Materials, 1999, 11, 1776-1783.	3.2	45
64	Syntheses and Crystal Structures of Three Copper Tellurides:  BaDyCuTe3, K1.5Dy2Cu2.5Te5, and Acentric K0.5Ba0.5DyCu1.5Te3. Chemistry of Materials, 1998, 10, 1320-1326.	3.2	41
65	Synthesis and Structure of New Cd⠒Bi⠒S Homologous Series:  A Study in Intergrowth and the Control of Twinning Patterns. Chemistry of Materials, 1997, 9, 2025-2030.	3.2	24
66	A spectroscopic study on the existence of Cu3+ OR O2â^2 in the superconducting YBa2Cu3â^xCoxO7±δ phase. Journal of Physics and Chemistry of Solids, 1991, 52, 545-549.	1.9	11
67	Preparation of 90K superconductor YBa2Cu3O7â^î´via oxide precursors BaCuO2 and Y2Cu2O5. Materials Research Bulletin, 1989, 24, 867-874.	2.7	9