
Deep Pooja Kulhari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7639417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inulin coated Mn3O4 nanocuboids coupled with RNA interference reverse intestinal tumorigenesis in Apc knockout murine colon cancer models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102504.	1.7	8
2	Genistein encapsulated inulin-stearic acid bioconjugate nanoparticles: Formulation development, characterization and anticancer activity. International Journal of Biological Macromolecules, 2022, 206, 213-221.	3.6	26
3	Improving Anticancer Activity of Chrysin using Tumor Microenvironment pH-Responsive and Self-Assembled Nanoparticles. ACS Omega, 2022, 7, 15919-15928.	1.6	17
4	Introduction to Nanomedicines: Basic Concept and Applications. , 2021, , 1-23.		0
5	Self-assembled and pH-responsive polymeric nanomicelles impart effective delivery of paclitaxel to cancer cells. RSC Advances, 2021, 11, 13928-13939.	1.7	14
6	Biotinylated Mn3O4 nanocuboids for targeted delivery of gemcitabine hydrochloride to breast cancer and MRI applications. International Journal of Pharmaceutics, 2021, 606, 120895.	2.6	15
7	Dendrimers for diagnostic applications. , 2020, , 291-324.		6
8	Baicalin encapsulating lipid-surfactant conjugate based nanomicelles: Preparation, characterization and anticancer activity. Chemistry and Physics of Lipids, 2020, 233, 104978.	1.5	13
9	N-acetyl-d-glucosamine-conjugated PAMAM dendrimers as dual receptor-targeting nanocarriers for anticancer drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 377-386.	2.0	36
10	Solid-state properties, solubility, stability and dissolution behaviour of co-amorphous solid dispersions of baicalin. CrystEngComm, 2020, 22, 6128-6136.	1.3	10
11	Morin hydrate loaded solid lipid nanoparticles: Characterization, stability, anticancer activity, and bioavailability. Chemistry and Physics of Lipids, 2020, 233, 104988.	1.5	25
12	Modulating the Delivery of 5-Fluorouracil to Human Colon Cancer Cells Using Multifunctional Arginine-Coated Manganese Oxide Nanocuboids with MRI Properties. ACS Applied Bio Materials, 2020, 3, 6852-6864.	2.3	17
13	Amorphous nano morin outperforms native molecule in anticancer activity and oral bioavailability. Drug Development and Industrial Pharmacy, 2020, 46, 1123-1132.	0.9	8
14	A nanoscale, biocompatible and amphiphilic prodrug of cabazitaxel with improved anticancer efficacy against 3D spheroids of prostate cancer cells. Materials Advances, 2020, 1, 738-748.	2.6	13
15	Site-specific delivery of a natural chemotherapeutic agent to human lung cancer cells using biotinylated 2D rGO nanocarriers. Materials Science and Engineering C, 2020, 112, 110884.	3.8	29
16	Serotonin-Functionalized Vit-E Nanomicelles for Targeting of Irinotecan to Prostate Cancer Cells. ACS Applied Bio Materials, 2020, 3, 5093-5102.	2.3	8
17	Inulin-pluronic-stearic acid based double folded nanomicelles for pH-responsive delivery of resveratrol. Carbohydrate Polymers, 2020, 247, 116730.	5.1	32
18	Serotonin–Stearic Acid Bioconjugate-Coated Completely Biodegradable Mn ₃ O ₄ Nanocuboids for Hepatocellular Carcinoma Targeting. ACS Applied Materials & Interfaces, 2020, 12, 10170-10182.	4.0	26

DEEP POOJA KULHARI

#	Article	IF	CITATIONS
19	Potent and Selective Cytotoxic and Antiâ€inflammatory Gold(III) Compounds Containing Cyclometalated Phosphine Sulfide Ligands. Chemistry - A European Journal, 2019, 25, 14089-14100.	1.7	16
20	Bombesin receptors as potential targets for anticancer drug delivery and imaging. International Journal of Biochemistry and Cell Biology, 2019, 114, 105567.	1.2	25
21	Modulating the site-specific oral delivery of sorafenib using sugar-grafted nanoparticles for hepatocellular carcinoma treatment. European Journal of Pharmaceutical Sciences, 2019, 137, 104978.	1.9	33
22	Design of Eco-Friendly Gold Nanoparticles for Cancer Treatment. Methods in Molecular Biology, 2019, 1974, 215-221.	0.4	2
23	Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. International Journal of Biological Macromolecules, 2019, 132, 852-863.	3.6	83
24	Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chemistry and Physics of Lipids, 2019, 224, 104770.	1.5	50
25	Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. , 2019, , 67-114.		19
26	Designing of fatty acid-surfactant conjugate based nanomicelles of morin hydrate for simultaneously enhancing anticancer activity and oral bioavailability. Colloids and Surfaces B: Biointerfaces, 2019, 175, 202-211.	2.5	36
27	Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physiochemical properties and low oral bioavailability. Phytomedicine, 2018, 40, 48-54.	2.3	56
28	Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 168-179.	2.0	77
29	Designing Twoâ€Dimensional Nanosheets for Improving Drug Delivery to Fucoseâ€Receptorâ€Overexpressing Cancer Cells. ChemMedChem, 2018, 13, 2644-2652.	1.6	14
30	Dendrimer-drug conjugates. , 2018, , 277-303.		4
31	Determination of solubility, stability and degradation kinetics of morin hydrate in physiological solutions. RSC Advances, 2018, 8, 28836-28842.	1.7	39
32	Lipid-based nanomedicines. , 2018, , 509-528.		9
33	Peptide grafted and self-assembled poly(γ-glutamic acid)-phenylalanine nanoparticles targeting camptothecin to glioma. Nanomedicine, 2017, 12, 1661-1674.	1.7	10
34	Poly (amidoamine) dendrimer-mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide. European Journal of Pharmaceutical Sciences, 2017, 96, 84-92.	1.9	27
35	Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chemistry and Physics of Lipids, 2016, 198, 51-60.	1.5	120

 $_{36}$ Formulation and dosage of therapeutic nanosuspension for active targeting of docetaxel (WO) Tj ETQq0 0 0 rgBT / $_{2.4}^{O}$ verlock $_{10}^{10}$ Tf 50 62

DEEP POOJA KULHARI

#	Article	IF	CITATIONS
37	Improving Efficacy, Oral Bioavailability, and Delivery of Paclitaxel Using Protein-Grafted Solid Lipid Nanoparticles. Molecular Pharmaceutics, 2016, 13, 3903-3912.	2.3	80
38	Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Scientific Reports, 2016, 6, 23179.	1.6	133
39	Cyclic RGDfK Peptide Functionalized Polymeric Nanocarriers for Targeting Gemcitabine to Ovarian Cancer Cells. Molecular Pharmaceutics, 2016, 13, 1491-1500.	2.3	44
40	Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data in Brief, 2016, 6, 15-19.	0.5	75
41	Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. Journal of Drug Targeting, 2016, 24, 212-223.	2.1	94
42	Biomedical Applications of Trastuzumab: As a Therapeutic Agent and a Targeting Ligand. Medicinal Research Reviews, 2015, 35, 849-876.	5.0	31
43	Cyclic-RGDfK-Directed Docetaxel Loaded Nanomicelles for Angiogenic Tumor Targeting. Methods in Pharmacology and Toxicology, 2015, , 157-168.	0.1	1
44	Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. International Journal of Biological Macromolecules, 2015, 80, 48-56.	3.6	118
45	Cyclic-RGDfK peptide conjugated succinoyl-TPGS nanomicelles for targeted delivery of docetaxel to integrin receptor over-expressing angiogenic tumours. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1511-1520.	1.7	51
46	Nanomedicines for targeted delivery of etoposide to non-small cell lung cancer using transferrin functionalized nanoparticles. RSC Advances, 2015, 5, 49122-49131.	1.7	45
47	Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of Rifampicin. Chemistry and Physics of Lipids, 2015, 193, 11-17.	1.5	34
48	Bombesin-conjugated nanoparticles improve the cytotoxic efficacy of docetaxel against gastrin-releasing but androgen-independent prostate cancer. Nanomedicine, 2015, 10, 2847-2859.	1.7	33
49	Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation. Drug Development and Industrial Pharmacy, 2015, 41, 232-238.	0.9	51
50	Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydrate Polymers, 2014, 110, 1-9.	5.1	171
51	Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel. Colloids and Surfaces B: Biointerfaces, 2014, 117, 166-173.	2.5	64
52	Dendrimer–TPCS mixed micelles for enhanced solubility and cellular toxicity of taxanes. Colloids and Surfaces B: Biointerfaces, 2014, 121, 461-468.	2.5	72
53	Fabrication, characterization and bioevaluation of silibinin loaded chitosan nanoparticles. International Journal of Biological Macromolecules, 2014, 69, 267-273.	3.6	65
54	Surface modification of poly (l-lactic acid) microspheres for site-specific delivery of ketoprofen for chronic inflammatory disease. Journal of Drug Targeting, 2013, 21, 232-239.	2.1	1

#	Article	IF	CITATIONS
55	Performance evaluation of PAMAM dendrimer based simvastatin formulations. International Journal of Pharmaceutics, 2011, 405, 203-209.	2.6	89