Günther Winkelmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7639398/publications.pdf

Version: 2024-02-01

32 papers 1,737 citations

20 h-index 477307 29 g-index

34 all docs

34 docs citations

times ranked

34

1685 citing authors

#	Article	IF	Citations
1	The Siderophore Iron Transporter of Candida albicans (Sit1p/Arn1p) Mediates Uptake of Ferrichrome-Type Siderophores and Is Required for Epithelial Invasion. Infection and Immunity, 2002, 70, 5246-5255.	2.2	198
2	Ecology of siderophores with special reference to the fungi. BioMetals, 2007, 20, 379-392.	4.1	185
3	Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. International Journal of Medical Microbiology, 2006, 296, 513-520.	3.6	113
4	Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2000, 186, 221-227.	1.8	109
5	A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. BioMetals, 2000, 13 , $65-72$.	4.1	99
6	Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology (United Kingdom), 2005, 151, 2363-2372.	1.8	97
7	Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. BioMetals, 1999, 12, 301-306.	4.1	87
8	Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. BioMetals, 2000, 13, 37-46.	4.1	84
9	Coordination Chemistry of the Carboxylate Type Siderophore Rhizoferrin:Â The Iron(III) Complex and Its Metal Analogs. Inorganic Chemistry, 1996, 35, 6429-6436.	4.0	81
10	Heterobactins: A new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups. BioMetals, 2001, 14, 119-125.	4.1	77
11	Structures and functions of fungal siderophores containing hydroxamate and complexone type iron binding ligands. Mycological Research, 1992, 96, 529-534.	2.5	69
12	Ferrichrome in Schizosaccharomyces pombe ? an iron transport and iron storage compound. BioMetals, 2004, 17, 647-654.	4.1	65
13	Stereochemical characterization of rhizoferrin and identification of its dehydration products. BioMetals, 1992, 5, 141-148.	4.1	55
14	Rhizoferrin: A complexone type siderophore of the mocorales and entomophthorales (Zygomycetes). FEMS Microbiology Letters, 1992, 94, 37-41.	1.8	46
15	The use of microbial siderophores for foliar iron application studies. Plant and Soil, 2005, 272, 245-252.	3.7	43
16	Title is missing!. BioMetals, 1999, 12, 189-193.	4.1	42
17	The detection of salmochelin and yersiniabactin in uropathogenic strains by a novel hydrolysis-fluorescence-detection (HFD) method. International Journal of Medical Microbiology, 2005, 295, 99-107.	3.6	28
18	The determination of ferric iron in plants by HPLC using the microbial iron chelator desferrioxamine E. BioMetals, 2005, 18, 53-62.	4.1	27

#	Article	IF	Citations
19	Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. BioMetals, 2013, 26, 969-979.	4.1	26
20	Iron supply to tobacco plants through foliar application of iron citrate and ferric dimerum acid. Physiologia Plantarum, 2004, 122, 380-385.	5.2	22
21	A search for glomuferrin: a potential siderophore of arbuscular mycorrhizal fungi of the genus Glomus. BioMetals, 2017, 30, 559-564.	4.1	22
22	Characterization of siderophores produced by different species of the dermatophytic fungiMicrosporum and Trichophyton. BioMetals, 1992, 5, 213-216.	4.1	21
23	Molecular recognition of siderophores: a study with cloned ferrioxamine receptors (FoxA) from Erwinia herbicola and Yersinia enterocolitica. BioMetals, 1998, 11, 131-137.	4.1	18
24	Siderophore Transport in Fungi. , 0, , 463-480.		18
25	Ecology of Siderophores. , 2014, , 435-450.		18
26	Characterization of a novel Spirillum-like bacterium that degrades ferrioxamine-type siderophores. BioMetals, 1996, 9, 78-83.	4.1	13
27	Siderophores in plant root tissue: Tagetes patula nana colonized by the arbuscular mycorrhizal fungus Gigaspora margarita. BioMetals, 2020, 33, 137-146.	4.1	12
28	The configuration of the chiral carbon atoms in staphyloferrin A and analysis of the transport properties in Staphylococcus aureus. BioMetals, 2005, 18, 75-81.	4.1	11
29	Specificity and mechanism of rhizoferrin-mediated metal ion uptake. BioMetals, 1996, 9, 185.	4.1	10
30	Siderophores of Symbiotic Fungi. , 2007, , 91-103.		10
31	Fe(III)-complexes of the tripodal trishydroxamate siderophore basidiochrome: Potential biological implications. Journal of Inorganic Biochemistry, 2011, 105, 1670-1674.	3.5	7
32	Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2000, 186, 221-227.	1.8	3