Xiangming Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7639281/publications.pdf Version: 2024-02-01

		9786	15266
210	18,168	73	126
papers	citations	h-index	g-index
211	211	211	12334
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 2005, 95, 480-492.	11.0	814
2	Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 2004, 89, 519-534.	11.0	682
3	Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, 2006, 100, 95-113.	11.0	667
4	Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the United States of America, 2013, 110, 4309-4314.	7.1	528
5	Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 2016, 185, 142-154.	11.0	524
6	Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 2018, 1, 44-50.	23.7	460
7	A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Scientific Data, 2017, 4, 170165.	5.3	335
8	Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology, 2005, 11, 1777-1787.	9.5	313
9	A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131, 104-120.	11.1	288
10	Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sensing of Environment, 2002, 82, 335-348.	11.0	277
11	Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4769-4774.	7.1	268
12	Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochemical Cycles, 2002, 16, 38-1-38-10.	4.9	267
13	Multiple afforestation programs accelerate the greenness in the †Three North' region of China from 1982 to 2013. Ecological Indicators, 2016, 61, 404-412.	6.3	264
14	Forest management in southern China generates short term extensive carbon sequestration. Nature Communications, 2020, 11, 129.	12.8	259
15	Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sensing of Environment, 2015, 160, 99-113.	11.0	257
16	A satelliteâ€based biosphere parameterization for net ecosystem CO ₂ exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Global Biogeochemical Cycles, 2008, 22, .	4.9	247
17	Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 2005, 94, 105-122.	11.0	242
18	Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106, 157-171.	11.1	207

#	Article	IF	CITATIONS
19	Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sustainable Cities and Society, 2019, 47, 101487.	10.4	204
20	Influences of urban spatial form on urban heat island effects at the community level in China. Sustainable Cities and Society, 2020, 53, 101972.	10.4	203
21	Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3810-3815.	7.1	199
22	Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sensing of Environment, 2005, 99, 357-371.	11.0	189
23	Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment, 2020, 239, 111624.	11.0	187
24	Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154, 189-201.	11.1	184
25	Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sensing of Environment, 2013, 134, 392-402.	11.0	183
26	Evolution of regional to global paddy rice mapping methods: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119, 214-227.	11.1	181
27	Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sensing of Environment, 2016, 183, 154-169.	11.0	180
28	Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sensing of Environment, 2006, 103, 465-473.	11.0	179
29	MODELING GROSS PRIMARY PRODUCTION OF AN EVERGREEN NEEDLELEAF FOREST USING MODIS AND CLIMATE DATA. , 2005, 15, 954-969.		177
30	Optimizing local climate zones to mitigate urban heat island effect in human settlements. Journal of Cleaner Production, 2020, 275, 123767.	9.3	167
31	Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change, 2021, 11, 442-448.	18.8	166
32	Understanding land surface temperature impact factors based on local climate zones. Sustainable Cities and Society, 2021, 69, 102818.	10.4	151
33	Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water (Switzerland), 2017, 9, 256.	2.7	147
34	Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sensing of Environment, 2020, 238, 110987.	11.0	146
35	Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nature Communications, 2014, 5, 4116.	12.8	145
36	Satelliteâ€Observed Major Greening and Biomass Increase in South China Karst During Recent Decade. Earth's Future, 2018, 6, 1017-1028.	6.3	143

#	Article	IF	CITATIONS
37	Satellite-observed pantropical carbon dynamics. Nature Plants, 2019, 5, 944-951.	9.3	141
38	The 10-m crop type maps in Northeast China during 2017–2019. Scientific Data, 2021, 8, 41.	5.3	141
39	Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163, 312-326.	11.1	138
40	Influence of urban morphological characteristics on thermal environment. Sustainable Cities and Society, 2021, 72, 103045.	10.4	133
41	Global distribution, trends, and drivers of flash drought occurrence. Nature Communications, 2021, 12, 6330.	12.8	130
42	A large but transient carbon sink from urbanization and rural depopulation in China. Nature Sustainability, 2022, 5, 321-328.	23.7	130
43	Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015. Science of the Total Environment, 2017, 579, 82-92.	8.0	127
44	A Methodology for Flash Drought Identification: Application of Flash Drought Frequency across the United States. Journal of Hydrometeorology, 2019, 20, 833-846.	1.9	120
45	Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105, 220-233.	11.1	118
46	Continued decrease of open surface water body area in Oklahoma during 1984–2015. Science of the Total Environment, 2017, 595, 451-460.	8.0	118
47	Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Science of the Total Environment, 2019, 689, 366-380.	8.0	116
48	Impact of urban morphology and landscape characteristics on spatiotemporal heterogeneity of land surface temperature. Sustainable Cities and Society, 2020, 63, 102443.	10.4	110
49	Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 74, 20-33.	11.1	107
50	High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Scientific Data, 2019, 6, 26.	5.3	107
51	Modeling gross primary productivity for winter wheat–maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture, Ecosystems and Environment, 2009, 129, 391-400.	5.3	106
52	Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images. Remote Sensing of Environment, 2020, 247, 111951.	11.0	105
53	Contribution of urban ventilation to the thermal environment and urban energy demand: Different climate background perspectives. Science of the Total Environment, 2021, 795, 148791.	8.0	105
54	Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Science of the Total Environment, 2020, 711, 135183.	8.0	104

#	Article	IF	CITATIONS
55	Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought. Remote Sensing of Environment, 2014, 152, 1-14.	11.0	103
56	Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images. International Journal of Applied Earth Observation and Geoinformation, 2016, 46, 1-12.	2.8	103
57	Spatial differentiation of urban wind and thermal environment in different grid sizes. Urban Climate, 2019, 28, 100458.	5.7	103
58	Rebound in China's coastal wetlands following conservation and restoration. Nature Sustainability, 2021, 4, 1076-1083.	23.7	103
59	Investigating the diversity of land surface temperature characteristics in different scale cities based on local climate zones. Urban Climate, 2020, 34, 100700.	5.7	101
60	Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sensing of Environment, 2019, 233, 111374.	11.0	100
61	Modeling gross primary production of irrigated and rain-fed maize using MODIS imagery and CO2 flux tower data. Agricultural and Forest Meteorology, 2011, 151, 1514-1528.	4.8	99
62	Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sensing of Environment, 2015, 162, 154-168.	11.0	93
63	Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101902.	2.8	92
64	Exploring thermal comfort of urban buildings based on local climate zones. Journal of Cleaner Production, 2022, 340, 130744.	9.3	92
65	A comparison of forest cover maps in Mainland Southeast Asia from multiple sources: PALSAR, MERIS, MODIS and FRA. Remote Sensing of Environment, 2012, 127, 60-73.	11.0	91
66	On the relationship between sub-daily instantaneous and daily total gross primary production: Implications for interpreting satellite-based SIF retrievals. Remote Sensing of Environment, 2018, 205, 276-289.	11.0	91
67	Mapping Deciduous Rubber Plantation Areas and Stand Ages with PALSAR and Landsat Images. Remote Sensing, 2015, 7, 1048-1073.	4.0	89
68	Identifying floods and flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166, 278-293.	11.1	89
69	Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sensing of Environment, 2019, 233, 111395.	11.0	85
70	Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa. Remote Sensing of Environment, 2013, 135, 189-201.	11.0	82
71	Comparison of solarâ€induced chlorophyll fluorescence, lightâ€use efficiency, and processâ€based <scp>GPP</scp> models in maize. Ecological Applications, 2016, 26, 1211-1222.	3.8	82
72	Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agricultural and Forest Meteorology, 2016, 226-227, 246-256.	4.8	81

#	Article	IF	CITATIONS
73	Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nature Communications, 2020, 11, 3471.	12.8	81
74	TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22393-22398.	7.1	78
75	Canopy and physiological controls of GPP during drought and heat wave. Geophysical Research Letters, 2016, 43, 3325-3333.	4.0	75
76	Assimilating Soil Moisture Retrieved from Sentinel-1 and Sentinel-2 Data into WOFOST Model to Improve Winter Wheat Yield Estimation. Remote Sensing, 2019, 11, 1618.	4.0	73
77	Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nature Sustainability, 2019, 2, 764-772.	23.7	71
78	Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform. Remote Sensing, 2019, 11, 313.	4.0	71
79	Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China. Land Degradation and Development, 2019, 30, 1620-1631.	3.9	71
80	Forest cover maps of China in 2010 from multiple approaches and data sources: PALSAR, Landsat, MODIS, FRA, and NFI. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 109, 1-16.	11.1	70
81	Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images. International Journal of Applied Earth Observation and Geoinformation, 2016, 50, 117-130.	2.8	69
82	Sensitivity analysis of vegetation indices to drought over two tallgrass prairie sites. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108, 151-160.	11.1	68
83	FluoSpec 2—An Automated Field Spectroscopy System to Monitor Canopy Solar-Induced Fluorescence. Sensors, 2018, 18, 2063.	3.8	67
84	Trends and controls of terrestrial gross primary productivity of China during 2000–2016. Environmental Research Letters, 2019, 14, 084032.	5.2	66
85	Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environmental Research Letters, 2020, 15, 094078.	5.2	66
86	Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984–2010 through PALSAR and time series Landsat images. Remote Sensing of Environment, 2017, 190, 233-246.	11.0	65
87	Assessing consistency of spring phenology of snow-covered forests as estimated by vegetation indices, gross primary production, and solar-induced chlorophyll fluorescence. Agricultural and Forest Meteorology, 2019, 275, 305-316.	4.8	64
88	Spatial evolution of population change in Northeast China during 1992–2018. Science of the Total Environment, 2021, 776, 146023.	8.0	64
89	Quantifying expansion and removal of Spartina alterniflora on Chongming island, China, using time series Landsat images during 1995–2018. Remote Sensing of Environment, 2020, 247, 111916.	11.0	63
90	Estimation and analysis of gross primary production of soybean under various management practices and drought conditions. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99, 70-83.	11.1	62

#	Article	IF	CITATIONS
91	Land claim and loss of tidal flats in the Yangtze Estuary. Scientific Reports, 2016, 6, 24018.	3.3	62
92	Evolution of light use efficiency models: Improvement, uncertainties, and implications. Agricultural and Forest Meteorology, 2022, 317, 108905.	4.8	62
93	Characterizing the encroachment of juniper forests into sub-humid and semi-arid prairies from 1984 to 2010 using PALSAR and Landsat data. Remote Sensing of Environment, 2018, 205, 166-179.	11.0	61
94	Comparison of Gross Primary Productivity Derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia. Remote Sensing, 2014, 6, 2108-2133.	4.0	59
95	Modeling gross primary production of maize cropland and degraded grassland in northeastern China. Agricultural and Forest Meteorology, 2010, 150, 1160-1167.	4.8	58
96	Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Scientific Reports, 2016, 6, 39748.	3.3	57
97	Fingerprint of rice paddies in spatial–temporal dynamics of atmospheric methane concentration in monsoon Asia. Nature Communications, 2020, 11, 554.	12.8	56
98	Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS and PALSAR images. Scientific Reports, 2015, 5, 10088.	3.3	55
99	A Simple Algorithm for Large-Scale Mapping of Evergreen Forests in Tropical America, Africa and Asia. Remote Sensing, 2009, 1, 355-374.	4.0	54
100	Changes in rice cropping systems in the Poyang Lake Region, China during 2004–2010. Journal of Chinese Geography, 2012, 22, 653-668.	3.9	52
101	Mapping Oil Palm Plantations in Cameroon Using PALSAR 50-m Orthorectified Mosaic Images. Remote Sensing, 2015, 7, 1206-1224.	4.0	52
102	Variability and Changes in Climate, Phenology, and Gross Primary Production of an Alpine Wetland Ecosystem. Remote Sensing, 2016, 8, 391.	4.0	51
103	Largeâ€scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 466-486.	3.0	50
104	Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010. Scientific Reports, 2016, 6, 20880.	3.3	49
105	Spatioâ€Temporal Convergence of Maximum Daily Lightâ€Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll. Geophysical Research Letters, 2018, 45, 3508-3519.	4.0	48
106	The 2012 Flash Drought Threatened US Midwest Agroecosystems. Chinese Geographical Science, 2019, 29, 768-783.	3.0	48
107	Annual dynamics of forest areas in South America during 2007–2010 at 50-m spatial resolution. Remote Sensing of Environment, 2017, 201, 73-87.	11.0	47
108	Estimation of Sugarcane Yield Using a Machine Learning Approach Based on UAV-LiDAR Data. Remote Sensing, 2020, 12, 2823.	4.0	47

#	Article	IF	CITATIONS
109	A 50-m Forest Cover Map in Southeast Asia from ALOS/PALSAR and Its Application on Forest Fragmentation Assessment. PLoS ONE, 2014, 9, e85801.	2.5	46
110	Tracking the spatio-temporal change of cropping intensity in China during 2000–2015. Environmental Research Letters, 2019, 14, 035008.	5.2	46
111	Spatiotemporal patterns of vegetation phenology along the urban–rural gradient in Coastal Dalian, China. Urban Forestry and Urban Greening, 2020, 54, 126784.	5.3	46
112	Estimating Forest Stock Volume in Hunan Province, China, by Integrating In Situ Plot Data, Sentinel-2 Images, and Linear and Machine Learning Regression Models. Remote Sensing, 2020, 12, 186.	4.0	44
113	Dominant role of plant physiology in trend and variability of gross primary productivity in North America. Scientific Reports, 2017, 7, 41366.	3.3	43
114	Modeling gross primary production of paddy rice cropland through analyses of data from CO2 eddy flux tower sites and MODIS images. Remote Sensing of Environment, 2017, 190, 42-55.	11.0	42
115	Quantifying annual changes in built-up area in complex urban-rural landscapes from analyses of PALSAR and Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124, 89-105.	11.1	42
116	Performance of four state-of-the-art GPP products (VPM, MOD17, BESS and PML) for grasslands in drought years. Ecological Informatics, 2020, 56, 101052.	5.2	42
117	Modeling gross primary production of a temperate grassland ecosystem in Inner Mongolia, China, using MODIS imagery and climate data. Science in China Series D: Earth Sciences, 2008, 51, 1501-1512.	0.9	41
118	Examining the short-term impacts of diverse management practices on plant phenology and carbon fluxes of Old World bluestems pasture. Agricultural and Forest Meteorology, 2017, 237-238, 60-70.	4.8	41
119	Quantifying agricultural drought in tallgrass prairie region in the U.S. Southern Great Plains through analysis of a water-related vegetation index from MODIS images. Agricultural and Forest Meteorology, 2017, 246, 111-122.	4.8	40
120	Light absorption by leaf chlorophyll and maximum light use efficiency. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 1933-1935.	6.3	39
121	Responses of gross primary production of grasslands and croplands under drought, pluvial, and irrigation conditions during 2010–2016, Oklahoma, USA. Agricultural Water Management, 2018, 204, 47-59.	5.6	38
122	Effects of reclamation and natural changes on coastal wetlands bordering China's Yellow Sea from 1984 to 2015. Land Degradation and Development, 2019, 30, 1533-1544.	3.9	38
123	Urban scale ventilation analysis based on neighborhood normalized current model. Sustainable Cities and Society, 2022, 80, 103746.	10.4	38
124	A library of georeferenced photos from the field. Eos, 2011, 92, 453-454.	0.1	36
125	Underestimates of Grassland Gross Primary Production in MODIS Standard Products. Remote Sensing, 2018, 10, 1771.	4.0	36
126	Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007–2014. Science of the Total Environment, 2018, 639, 1241-1253.	8.0	36

#	Article	IF	CITATIONS
127	Evapotranspiration-dominated biogeophysical warming effect of urbanization in the Beijing-Tianjin-Hebei region, China. Climate Dynamics, 2019, 52, 1231-1245.	3.8	36
128	Mapping Forest and Their Spatial–Temporal Changes From 2007 to 2015 in Tropical Hainan Island by Integrating ALOS/ALOS-2 L-Band SAR and Landsat Optical Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 852-867.	4.9	35
129	Contributions of sea–land breeze and local climate zones to daytime and nighttime heat island intensity. Npj Urban Sustainability, 2022, 2, .	8.0	34
130	Impact of Climate Change on Vegetation Growth in Arid Northwest of China from 1982 to 2011. Remote Sensing, 2016, 8, 364.	4.0	33
131	Different Patterns in Daytime and Nighttime Thermal Effects of Urbanization in Beijing-Tianjin-Hebei Urban Agglomeration. Remote Sensing, 2017, 9, 121.	4.0	31
132	Modeling Carbon Fluxes Using Multi-Temporal MODIS Imagery and CO2 Eddy Flux Tower Data in Zoige Alpine Wetland, South-West China. Wetlands, 2014, 34, 603-618.	1.5	30
133	Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Scientific Reports, 2017, 7, 14963.	3.3	30
134	Expansion dynamics of deciduous rubber plantations in Xishuangbanna, China during 2000–2010. GIScience and Remote Sensing, 2018, 55, 905-925.	5.9	30
135	Spatiotemporal Consistency of Four Gross Primary Production Products and Solarâ€Induced Chlorophyll Fluorescence in Response to Climate Extremes Across CONUS in 2012. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3140-3161.	3.0	30
136	Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat 7/8 and Sentinel-2 images. Remote Sensing of Environment, 2022, 269, 112810.	11.0	30
137	Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model. Agricultural and Forest Meteorology, 2015, 213, 240-250.	4.8	29
138	Estimating aboveground biomass of broadleaf, needleleaf, and mixed forests in Northeastern China through analysis of 25-m ALOS/PALSAR mosaic data. Forest Ecology and Management, 2017, 389, 199-210.	3.2	29
139	Carbon dioxide and water vapor fluxes in winter wheat and tallgrass prairie in central Oklahoma. Science of the Total Environment, 2018, 644, 1511-1524.	8.0	29
140	Variation in Cropping Intensity in Northern China from 1982 to 2012 Based on GIMMS-NDVI Data. Sustainability, 2016, 8, 1123.	3.2	27
141	Analysis and estimation of tallgrass prairie evapotranspiration in the central United States. Agricultural and Forest Meteorology, 2017, 232, 35-47.	4.8	27
142	Modelling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data. International Journal of Remote Sensing, 2013, 34, 2829-2857.	2.9	26
143	Modeling gross primary production of maize and soybean croplands using light quality, temperature, water stress, and phenology. Agricultural and Forest Meteorology, 2015, 213, 160-172.	4.8	26
144	Comparison of Pixel- and Object-Based Approaches in Phenology-Based Rubber Plantation Mapping in Fragmented Landscapes. Remote Sensing, 2018, 10, 44.	4.0	26

#	Article	IF	CITATIONS
145	Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019–2020. Remote Sensing of Environment, 2022, 278, 113087.	11.0	26
146	Accuracy Assessment and Inter-Comparison of Eight Medium Resolution Forest Products on the Loess Plateau, China. ISPRS International Journal of Geo-Information, 2017, 6, 152.	2.9	25
147	Enhanced gross primary production and evapotranspiration in juniperâ€encroached grasslands. Global Change Biology, 2018, 24, 5655-5667.	9.5	25
148	Identifying Establishment Year and Pre-Conversion Land Cover of Rubber Plantations on Hainan Island, China Using Landsat Data during 1987–2015. Remote Sensing, 2018, 10, 1240.	4.0	25
149	Response of Tropical Terrestrial Gross Primary Production to the Super El Niño Event in 2015. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3193-3203.	3.0	24
150	Increasing Outbreak of Cyanobacterial Blooms in Large Lakes and Reservoirs under Pressures from Climate Change and Anthropogenic Interferences in the Middle–Lower Yangtze River Basin. Remote Sensing, 2019, 11, 1754.	4.0	24
151	Accelerating Cities in an Unsustainable Landscape: Urban Expansion and Cropland Occupation in China, 1990–2030. Sustainability, 2019, 11, 2283.	3.2	24
152	Urban ventilation corridors and spatiotemporal divergence patterns of urban heat island intensity: a local climate zone perspective. Environmental Science and Pollution Research, 2022, 29, 74394-74406.	5.3	24
153	Mapping Annual Forest Cover in Sub-Humid and Semi-Arid Regions through Analysis of Landsat and PALSAR Imagery. Remote Sensing, 2016, 8, 933.	4.0	21
154	Assessing the Extent and Impact of Online Data Sharing in Eddy Covariance Flux Research. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 129-137.	3.0	21
155	Dynamical Downscaling of CO ₂ in 2016 Over the Contiguous United States Using WRFâ€VPRM, a Weatherâ€Biosphereâ€Onlineâ€Coupled Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001875.	3.8	21
156	Small anomalies in dry-season greenness and chlorophyll fluorescence for Amazon moist tropical forests during El Niño and La Niña. Remote Sensing of Environment, 2021, 253, 112196.	11.0	21
157	Global cale Consistency of Spaceborne Vegetation Indices, Chlorophyll Fluorescence, and Photosynthesis. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006136.	3.0	21
158	Impacts of juniper woody plant encroachment into grasslands on local climate. Agricultural and Forest Meteorology, 2021, 307, 108508.	4.8	21
159	REMOTE SENSING, ECOLOGICAL VARIABLES, AND WILD BIRD MIGRATION RELATED TO OUTBREAKS OF HIGHLY PATHOGENIC H5N1 AVIAN INFLUENZA. Journal of Wildlife Diseases, 2007, 43, S40-S46.	0.8	21
160	Rapid surface water expansion due to increasing artificial reservoirs and aquaculture ponds in North China Plain. Journal of Hydrology, 2022, 608, 127637.	5.4	21
161	Are There Sufficient Landsat Observations for Retrospective and Continuous Monitoring of Land Cover Changes in China?. Remote Sensing, 2019, 11, 1808.	4.0	20
162	Canopy and climate controls of gross primary production of Mediterranean-type deciduous and evergreen oak savannas. Agricultural and Forest Meteorology, 2016, 226-227, 132-147.	4.8	19

#	Article	IF	CITATIONS
163	Forest Changes by Precipitation Zones in Northern China after the Three-North Shelterbelt Forest Program in China. Remote Sensing, 2021, 13, 543.	4.0	17
164	Large spatial variation and stagnation of cropland gross primary production increases the challenges of sustainable grain production and food security in China. Science of the Total Environment, 2022, 811, 151408.	8.0	17
165	Assimilating remote sensing-based VPM GPP into the WOFOST model for improving regional winter wheat yield estimation. European Journal of Agronomy, 2022, 139, 126556.	4.1	17
166	Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China. Frontiers of Earth Science, 2016, 10, 303-314.	2.1	16
167	Estimating site-specific optimum air temperature and assessing its effect on the photosynthesis of grasslands in mid- to high-latitudes. Environmental Research Letters, 2020, 15, 034064.	5.2	16
168	Estimation of the relative contributions of forest areal expansion and growth to China's forest stand biomass carbon sequestration from 1977 to 2018. Journal of Environmental Management, 2021, 300, 113757.	7.8	16
169	Could Changes in the Agricultural Landscape of Northeastern China Have Influenced the Long-Distance Transmission of Highly Pathogenic Avian Influenza H5Nx Viruses?. Frontiers in Veterinary Science, 2017, 4, 225.	2.2	14
170	Tracking Reforestation in the Loess Plateau, China after the "Grain for Green―Project through Integrating PALSAR and Landsat Imagery. Remote Sensing, 2019, 11, 2685.	4.0	14
171	Mismatches between the resources for adult herbivores and their offspring suggest invasive <i>Spartina alterniflora</i> is an ecological trap. Journal of Ecology, 2020, 108, 719-732.	4.0	14
172	Annual 30-m big Lake Maps of the Tibetan Plateau in 1991–2018. Scientific Data, 2022, 9, 164.	5.3	14
173	Quantifying spatial-temporal changes of tea plantations in complex landscapes through integrative analyses of optical and microwave imagery. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 697-711.	2.8	13
174	Understanding the Land Surface Phenology and Gross Primary Production of Sugarcane Plantations by Eddy Flux Measurements, MODIS Images, and Data-Driven Models. Remote Sensing, 2020, 12, 2186.	4.0	13
175	Quantifying the indirect effects of urbanization on urban vegetation carbon uptake in the megacity of Shanghai, China. Environmental Research Letters, 2021, 16, 064088.	5.2	13
176	Spatial-temporal dynamics of maize and soybean planted area, harvested area, gross primary production, and grain production in the Contiguous United States during 2008-2018. Agricultural and Forest Meteorology, 2021, 297, 108240.	4.8	12
177	The relationships between urban-rural temperature difference and vegetation in eight cities of the Great Plains. Frontiers of Earth Science, 2019, 13, 290-302.	2.1	11
178	Tracking the phenology and expansion of Spartina alterniflora coastal wetland by time series MODIS and Landsat images. Multimedia Tools and Applications, 2020, 79, 5175-5195.	3.9	11
179	Divergent Trends of Water Storage Observed via Gravity Satellite across Distinct Areas in China. Water (Switzerland), 2020, 12, 2862.	2.7	11
180	Carbon dioxide and water vapor fluxes of multi-purpose winter wheat production systems in the U.S. Southern Great Plains. Agricultural and Forest Meteorology, 2021, 310, 108631.	4.8	11

#	Article	IF	CITATIONS
181	Assessing the Impacts of Tidal Creeks on the Spatial Patterns of Coastal Salt Marsh Vegetation and Its Aboveground Biomass. Remote Sensing, 2022, 14, 1839.	4.0	11
182	Integrated Analyses of PALSAR and Landsat Imagery Reveal More Agroforests in a Typical Agricultural Production Region, North China Plain. Remote Sensing, 2018, 10, 1323.	4.0	10
183	Winter Wheat Green-up Date Variation and its Diverse Response on the Hydrothermal Conditions over the North China Plain, Using MODIS Time-Series Data. Remote Sensing, 2019, 11, 1593.	4.0	10
184	High-Precision Stand Age Data Facilitate the Estimation of Rubber Plantation Biomass: A Case Study of Hainan Island, China. Remote Sensing, 2020, 12, 3853.	4.0	10
185	Impact of spring phenology variation on GPP and its lag feedback for winter wheat over the North China Plain. Science of the Total Environment, 2020, 725, 138342.	8.0	10
186	Meteorological Influences on Spatiotemporal Variation of PM2.5 Concentrations in Atmospheric Pollution Transmission Channel Cities of the Beijing–Tianjin–Hebei Region, China. International Journal of Environmental Research and Public Health, 2022, 19, 1607.	2.6	10
187	Enhanced spring phenological temperature sensitivity explains the extension of carbon uptake period in temperate forest protected areas. Forest Ecology and Management, 2020, 455, 117679.	3.2	9
188	Grassland Wildfires in the Southern Great Plains: Monitoring Ecological Impacts and Recovery. Remote Sensing, 2020, 12, 619.	4.0	9
189	Spatially explicit changes in forest biomass carbon of China over the past 4 decades: Coupling long-term inventory and remote sensing data. Journal of Cleaner Production, 2021, 316, 128274.	9.3	9
190	Spatial-Temporal Patterns of Network Structure of Human Settlements Competitiveness in Resource-Based Urban Agglomerations. Frontiers in Environmental Science, 2022, 10, .	3.3	9
191	Assessing variability of optimum air temperature for photosynthesis across site-years, sites and biomes and their effects on photosynthesis estimation. Agricultural and Forest Meteorology, 2021, 298-299, 108277.	4.8	8
192	Using Time Series Optical and SAR Data to Assess the Impact of Historical Wetland Change on Current Wetland in Zhenlai County, Jilin Province, China. Remote Sensing, 2021, 13, 4514.	4.0	7
193	Spatiotemporal Changes of Winter Wheat Planted and Harvested Areas, Photosynthesis and Grain Production in the Contiguous United States from 2008–2018. Remote Sensing, 2021, 13, 1735.	4.0	6
194	Improved estimation of gross primary production of paddy rice cropland with changing model parameters over phenological transitions. Ecological Modelling, 2021, 445, 109492.	2.5	6
195	Differential responses of native and managed prairie pastures to environmental variability and management practices. Agricultural and Forest Meteorology, 2020, 294, 108137.	4.8	4
196	Analysis of Parameters for the Accurate and Fast Estimation of Tree Diameter at Breast Height Based on Simulated Point Cloud. Remote Sensing, 2019, 11, 2707.	4.0	3
197	Spatial-temporal variation of satellite-based gross primary production estimation in wheat-maize rotation area during 2000–2015. Geocarto International, 2022, 37, 2506-2523.	3.5	3
198	Annual Maps of Forests in Australia from Analyses of Microwave and Optical Images with FAO Forest Definition. Journal of Remote Sensing, 2021, 2021, .	6.7	3

#	Article	IF	CITATIONS
199	Mapping forest in the southern Great Plains with ALOS-2 PALSAR-2 and Landsat 7/8 data. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102578.	2.8	3
200	Comparing Evapotranspiration Products of Different Temporal and Spatial Scales in Native and Managed Prairie Pastures. Remote Sensing, 2021, 13, 82.	4.0	3
201	Climate Change and Livestock Management Drove Extensive Vegetation Recovery in the Qinghai-Tibet Plateau. Remote Sensing, 2021, 13, 4808.	4.0	3
202	Space evidence of enhanced photosynthetic carbon uptake under fragmented temperate forests. Environmental Research Letters, 2022, 17, 044011.	5.2	3
203	Satellite-Based Surface Water Storage Estimation: Its history, current status, and future prospects. IEEE Geoscience and Remote Sensing Magazine, 2022, 10, 10-31.	9.6	3
204	Dormant Season Vegetation Phenology and Eddy Fluxes in Native Tallgrass Prairies of the U.S. Southern Plains. Remote Sensing, 2022, 14, 2620.	4.0	3
205	From Standard Weather Stations to Virtual Micro-Meteorological Towers in Ungauged Sites: Modeling Tool for Surface Energy Fluxes, Evapotranspiration, Soil Temperature, and Soil Moisture Estimations. Remote Sensing, 2021, 13, 1271.	4.0	2
206	Mapping Panax Notoginseng Plantations by Using an Integrated Pixel- and Object-Based (IPOB) Approach and ZY-3 Imagery. Remote Sensing, 2021, 13, 2184.	4.0	2
207	Flash drought identification from satellite-based land surface water index. Remote Sensing Applications: Society and Environment, 2022, 26, 100770.	1.5	2
208	Evaluating Effects of Medium-Resolution Optical Data Availability on Phenology-Based Rice Mapping in China. Remote Sensing, 2022, 14, 3134.	4.0	2
209	Reply to: "Correlation between paddy rice growth and satellite-observed methane column abundance does not imply causation― Nature Communications, 2021, 12, 1189.	12.8	1
210	Improving a Biogeochemical Model to Simulate Microbialâ€mediated Carbon Dynamics in Agricultural ecosystems. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002752.	3.8	1