
Roberta Tasso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7639257/publications.pdf Version: 2024-02-01

POREDTA TASSO

#	Article	IF	CITATIONS
1	Editorial: Extracellular Vesicles in Bone Oncology. Frontiers in Oncology, 2022, 12, 861335.	1.3	0
2	Circulating miRNAs in Breast Cancer Diagnosis and Prognosis. Cancers, 2022, 14, 2317.	1.7	16
3	Targeting PIK3CA Actionable Mutations in the Circulome: A Proof of Concept in Metastatic Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 6320.	1.8	4
4	Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs). Biomaterials, 2021, 269, 120633.	5.7	59
5	Extracellular Vesicles as Biomarkers and Therapeutic Tools: From Pre-Clinical to Clinical Applications. Biology, 2021, 10, 359.	1.3	69
6	Editorial: Bone and Cartilage Regeneration With Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 2021, 9, 692836.	2.0	0
7	The Human Fetal and Adult Stem Cell Secretome Can Exert Cardioprotective Paracrine Effects against Cardiotoxicity and Oxidative Stress from Cancer Treatment. Cancers, 2021, 13, 3729.	1.7	10
8	Role of Extracellular Vesicles from Adipose Tissue- and Bone Marrow-Mesenchymal Stromal Cells in Endothelial Proliferation and Chondrogenesis. Stem Cells Translational Medicine, 2021, 10, 1680-1695.	1.6	25
9	Extracellular Vesicles as Natural, Safe and Efficient Drug Delivery Systems. Pharmaceutics, 2019, 11, 557.	2.0	81
10	Isolation and Flow Cytometry Characterization of Extracellularâ€Vesicle Subpopulations Derived from Human Mesenchymal Stromal Cells. Current Protocols in Stem Cell Biology, 2019, 48, e76.	3.0	25
11	Delivery of cellular factors to regulate bone healing. Advanced Drug Delivery Reviews, 2018, 129, 285-294.	6.6	51
12	Circulating healing (CH) cells expressing BST2 are functionally activated by the injury-regulated systemic factor HGFA. Stem Cell Research and Therapy, 2018, 9, 300.	2.4	12
13	A Method for Isolating and Characterizing Mesenchymal Stromal Cellâ€derived Extracellular Vesicles. Current Protocols in Stem Cell Biology, 2018, 46, e55.	3.0	6
14	Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. Stem Cells Translational Medicine, 2017, 6, 1018-1028.	1.6	399
15	Learning from Mother Nature: Innovative Tools to Boost Endogenous Repair of Critical or Difficult-to-Heal Large Tissue Defects. Frontiers in Bioengineering and Biotechnology, 2017, 5, 28.	2.0	22
16	Harnessing Endogenous Cellular Mechanisms for Bone Repair. Frontiers in Bioengineering and Biotechnology, 2017, 5, 52.	2.0	9
17	Down-regulation of 21A Alu RNA as a tool to boost proliferation maintaining the tissue regeneration potential of progenitor cells. Cell Cycle, 2016, 15, 2420-2430.	1.3	3
18	Identification of a New Cell Population Constitutively Circulating in Healthy Conditions and Endowed with a Homing Ability Toward Injured Sites. Scientific Reports, 2015, 5, 16574.	1.6	12

Roberta Tasso

#	Article	IF	CITATIONS
19	Mesenchymal Stem Cell Paracrine Activity Is Modulated by Platelet Lysate: Induction of an Inflammatory Response and Secretion of Factors Maintaining Macrophages in a Proinflammatory Phenotype. Stem Cells and Development, 2014, 23, 1858-1869.	1.1	72
20	In Vivo Implanted Bone Marrow-Derived Mesenchymal Stem Cells Trigger a Cascade of Cellular Events Leading to the Formation of an Ectopic Bone Regenerative Niche. Stem Cells and Development, 2013, 22, 3178-3191.	1.1	60
21	The Regenerative Role of the Fetal and Adult Stem Cell Secretome. Journal of Clinical Medicine, 2013, 2, 302-327.	1.0	59
22	Mesenchymal Stem Cells Induce Functionally Active T-Regulatory Lymphocytes in a Paracrine Fashion and Ameliorate Experimental Autoimmune Uveitis. , 2012, 53, 786.		93
23	Bone Turnover in Wild Type and Pleiotrophin-Transgenic Mice Housed for Three Months in the International SpaceÂStation (ISS). PLoS ONE, 2012, 7, e33179.	1.1	78
24	The role of bFGF on the ability of MSC to activate endogenous regenerative mechanisms in an ectopic bone formation model. Biomaterials, 2012, 33, 2086-2096.	5.7	80
25	Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells. International Journal of Cancer, 2012, 130, 1484-1493.	2.3	55
26	The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials, 2010, 31, 242-249.	5.7	121
27	The recruitment of two consecutive and different waves of host stem/progenitor cells during the development of tissue-engineered bone in a murine model. Biomaterials, 2010, 31, 2121-2129.	5.7	93
28	An Aluâ€like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB Journal, 2010, 24, 4033-4046.	0.2	71
29	Lipocalin-2 controls the expression of SDF-1 and the number of responsive cells in bone. Cytokine, 2010, 51, 47-52.	1.4	16
30	Recruitment of a Host's Osteoprogenitor Cells Using Exogenous Mesenchymal Stem Cells Seeded on Porous Ceramic. Tissue Engineering - Part A, 2009, 15, 2203-2212.	1.6	83
31	Organization of Extracellular Matrix Fibers Within Polyglycolic Acid–Polylactic Acid Scaffolds Analyzed Using X-Ray Synchrotron-Radiation Phase-Contrast Micro Computed Tomography. Tissue Engineering - Part C: Methods, 2009, 15, 403-411.	1.1	31
32	Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis, 2009, 30, 150-157.	1.3	102
33	When stem cells meet immunoregulation. International Immunopharmacology, 2009, 9, 596-598.	1.7	26
34	Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis and Rheumatism, 2007, 56, 1175-1186.	6.7	533
35	Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 2005, 35, 1482-1490.	1.6	637