
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/763921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroelastic response of floating elastic plate in the presence of vertical porous barriers. Ships and Offshore Structures, 2022, 17, 457-471.	1.9	9
2	Oblique wave interaction with a two-layer pile-rock breakwater placed on elevated bottom. Ships and Offshore Structures, 2022, 17, 852-865.	1.9	8
3	Coupled Dynamic Analysis of Hybrid Offshore Wind Turbine and Wave Energy Converter. Journal of Offshore Mechanics and Arctic Engineering, 2022, 144, .	1.2	8
4	Numerical investigation on the wave dissipating performance due to multiple porous structures. ISH Journal of Hydraulic Engineering, 2021, 27, 202-219.	2.1	17
5	Performance evaluation of submerged breakwater using Multi-Domain Boundary Element Method. Applied Ocean Research, 2021, 114, 102760.	4.1	12
6	Coupled dynamic analysis of spar-type floating wind turbine under different wind and wave loading. Marine Systems and Ocean Technology, 2021, 16, 169-198.	1.0	5
7	Hydrodynamic Performance of Spar-Type Wind Turbine Platform Combined with Wave Energy Converter. Lecture Notes in Civil Engineering, 2021, , 115-123.	0.4	0
8	Hydroelastic analysis of periodic arrays of multiple articulated floating elastic plate. Ships and Offshore Structures, 2020, 15, 280-295.	1.9	10
9	Wave Interaction With Floating Elastic Plate Based on the Timoshenko–Mindlin Plate Theory. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, .	1.2	7
10	Wave transformation due to barrier-rock porous structure placed on step-bottom. Ships and Offshore Structures, 2020, 15, 895-909.	1.9	14
11	Significance of seabed characteristics on wave transformation in the presence of stratified porous block. Coastal Engineering Journal, 2020, 62, 1-22.	1.9	21
12	Scattering of Gravity Waves by Multiple Submerged Rubble-Mound Breakwaters. Arabian Journal for Science and Engineering, 2020, 45, 8529-8550.	3.0	14
13	Surface gravity wave scattering by multiple energy absorbing structures of variable horizontal porosity. Coastal Engineering Journal, 2020, 62, 504-526.	1.9	3
14	Wave motion over stratified porous absorber combined with seaward vertical barrier. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2020, 234, 830-845.	0.5	4
15	Gravity Wave Trapping by Series of Horizontally Stratified Wave Absorbers Away From Seawall. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, .	1.2	13
16	Influence of Impermeable Elevated Bottom on the Wave Scattering due to Multiple Porous Structures. Journal of Applied Fluid Mechanics, 2020, 13, 371-385.	0.2	7
17	Wave Transformation Due to a Submerged Porous Block Associated with a Vertical Barrier. , 2020, , 717-724.		0
18	Wave scattering by vertical porous block placed over flat and elevated seabed. Marine Systems and Ocean Technology, 2019, 14, 85-109.	1.0	12

#	Article	IF	CITATIONS
19	Influence of Support Conditions on the Hydroelastic Behaviour of Floating Thick Elastic Plate. Journal of Marine Science and Application, 2019, 18, 295-313.	1.7	5
20	Wave transformation due to floating thick elastic plate over multiple stepped bottom topography. Journal of Physics: Conference Series, 2019, 1276, 012018.	0.4	1
21	Wave Interaction with Multiple Submerged Porous Structures. Lecture Notes in Civil Engineering, 2019, , 265-279.	0.4	2
22	Wave Transformation Due to Floating Elastic Thick Plate over Changing Bottom Topography. Lecture Notes in Civil Engineering, 2019, , 417-430.	0.4	1
23	Numerical Investigation of Semi-submersible Floating Wind Turbine Combined with Flap-Type WECs. Lecture Notes in Civil Engineering, 2019, , 793-805.	0.4	1
24	Wave Energy Conversion by Multiple Bottom-Hinged Surging WEC. Lecture Notes in Civil Engineering, 2019, , 913-929.	0.4	1
25	Long term response analysis of TLP-type offshore wind turbine. ISH Journal of Hydraulic Engineering, 2018, , 1-13.	2.1	0
26	Hydroelastic analysis of articulated floating elastic plate based on Timoshenko–Mindlin plate theory. Ships and Offshore Structures, 2018, 13, 287-301.	1.9	6
27	Wave Motion Control Over Submerged Horizontal Plates. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140, .	1.2	4
28	Dynamic Analysis of Different Configurations of Offshore Floating Wind Turbine. , 2017, , .		0
29	Performance of optimally tuned arrays of heaving point absorbers. Renewable Energy, 2016, 92, 517-531.	8.9	40
30	Wave interaction with Very Large Floating Structure (VLFS) using BEM approach – Revisited. Perspectives in Science, 2016, 8, 533-535.	0.6	5
31	Hydroelastic analysis of floating elastic thick plate in shallow water depth. Perspectives in Science, 2016, 8, 770-772.	0.6	10
32	Hydrodynamic performance of concentric arrays of point absorbers. The International Journal of Ocean and Climate Systems, 2016, 7, 88-94.	0.8	1
33	Shallow water effects on wave energy converters with hydraulic power take-off system. The International Journal of Ocean and Climate Systems, 2016, 7, 108-117.	0.8	3
34	Long-Term Extreme Load Prediction of Spar and Semisubmersible Floating Wind Turbines Using the Environmental Contour Method. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138, .	1.2	25
35	Hydroelastic impact of a horizontal floating plate with forward speed. Journal of Fluids and Structures, 2016, 60, 97-113.	3.4	41
36	Floating Offshore Wind Platforms. Green Energy and Technology, 2016, , 53-76.	0.6	8

#	Article	IF	CITATIONS
37	Long-term assessment of the wave load acting on semi-submersible wind turbine support structure. , 2016, , 1125-1132.		Ο
38	Time domain analysis of circular array of heaving point absorbers. , 2016, , 1133-1140.		0
39	Performance of oscillating water column wave energy converters integrated in breakwaters. , 2016, , .		0
40	Performance of barge-type floaters for floating wind turbine. , 2016, , .		5
41	Extreme Response Prediction of Offshore Wind Turbine Using Inverse Reliability Technique. , 2015, , .		0
42	Comparison of Spar and Semisubmersible Floater Concepts of Offshore Wind Turbines Using Long-Term Analysis. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137, .	1.2	14
43	Propagation of Gravity Waves Past Multiple Bottom-Standing Barriers. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137, .	1.2	17
44	Numerical investigation of a submerged surging plate wave energy converter. , 2015, , 515-522.		1
45	Wave transformation due to multiple bottom-standing porous barriers. Ocean Engineering, 2014, 80, 50-63.	4.3	61
46	Scattering of gravity waves by multiple surface-piercing floating membrane. Applied Ocean Research, 2013, 39, 40-52.	4.1	52
47	Reliability based design loads of an offshore semi-submersible floating wind turbine. , 2013, , 919-926.		Ο
48	Review of offshore floating wind turbines concepts. , 2012, , 553-562.		5
49	Oblique scattering of gravity waves by moored floating membrane with changes in bottom topography. Ocean Engineering, 2012, 54, 87-100.	4.3	36
50	Scattering of gravity waves by a moored finite floating elastic plate. Applied Ocean Research, 2012, 34, 135-149.	4.1	35
51	Prediction of the motions of fishing vessels using time domain 3D panel method. , 2012, , 179-186.		Ο
52	On capillary gravity-wave motion in two-layer fluids. Journal of Engineering Mathematics, 2011, 71, 253-277.	1.2	27
53	Dynamic analysis of spar type floating offshore wind turbine. , 2011, , .		9
54	Wave interaction with moored floating elastic plate in the presence of end wall. , 2011, , .		0

#	Article	IF	CITATIONS
55	Oblique flexural gravity-wave scattering due to changes in bottom topography. Journal of Engineering Mathematics, 2010, 66, 325-341.	1.2	41
56	Wave interaction with multiple articulated floating elastic plates. Journal of Fluids and Structures, 2009, 25, 1065-1078.	3.4	37
57	Flexural Gravity Wave Scattering Due to Variations in Bottom Topography. , 2009, , .		1
58	Transformation of flexural gravity waves by heterogeneous boundaries. Journal of Engineering Mathematics, 2008, 62, 173-188.	1.2	18
59	Gravity wave interaction with floating membrane due to abrupt change in water depth. Ocean Engineering, 2008, 35, 598-615.	4.3	30
60	Expansion formulae for wave structure interaction problems with applications in hydroelasticity. International Journal of Engineering Science, 2007, 45, 807-828.	5.0	26
61	Scattering of flexural gravity waves by abrupt change in water depth. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 2050021-2050022.	0.2	0
62	Scattering of waves by articulated floating elastic plates in water of infinite depth. Marine Structures, 2005, 18, 451-471.	3.8	22
63	Wave transformation due to finite floating elastic plate with abrupt change in bottom topography. Ships and Offshore Structures, 0, , 1-19.	1.9	5