
Souad Rahmouni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7638941/publications.pdf Version: 2024-02-01

SOUND PAHMOUNI

#	Article	IF	CITATIONS
1	Endothelial extracellular vesicles promote tumour growth by tumourâ€associated macrophage reprogramming. Journal of Extracellular Vesicles, 2022, 11, .	12.2	24
2	Dual-specificity phosphatase 3 deletion promotes obesity, non-alcoholic steatohepatitis and hepatocellular carcinoma. Scientific Reports, 2021, 11, 5817.	3.3	3
3	MO329THE GENETIC DELETION OF THE DUAL SPECIFICITY PHOSPHATASE 3 (DUSP3) ATTENUATES KIDNEY DAMAGE FOLLOWING ISCHEMIA/REPERFUSION INJURY IN MOUSE. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
4	Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality. Journal of Clinical Investigation, 2021, 131, .	8.2	72
5	The genetic deletion of the Dual Specificity Phosphatase 3 (DUSP3) attenuates kidney damage and inflammation following ischemia/reperfusion injury in mouse. Acta Physiologica, 2021, , e13735.	3.8	6
6	CRELD1 modulates homeostasis of the immune system in mice and humans. Nature Immunology, 2020, 21, 1517-1527.	14.5	13
7	FP221GENETIC DELETION OF DUSP3 PHOSPHATASE ATTENUATES KIDNEY DAMAGE AND INFLAMMATION FOLLOWING ISCHEMIA/REPERFUSION IN MOUSE. Nephrology Dialysis Transplantation, 2018, 33, i105-i105.	0.7	0
8	IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nature Communications, 2018, 9, 2427.	12.8	159
9	Dual-Specificity Phosphatase 3 Deletion Protects Female, but Not Male, Mice from Endotoxemia-Induced and Polymicrobial-Induced Septic Shock. Journal of Immunology, 2017, 199, 2515-2527.	0.8	13
10	Dusp3 deletion in mice promotes experimental lung tumour metastasis in a macrophage dependent manner. PLoS ONE, 2017, 12, e0185786.	2.5	14
11	Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis. Methods in Molecular Biology, 2016, 1447, 301-330.	0.9	2
12	Functional Analysis of Dual-Specificity Protein Phosphatases in Angiogenesis. Methods in Molecular Biology, 2016, 1447, 331-349.	0.9	3
13	The Prosurvival IKK-Related Kinase IKKϵ Integrates LPS and IL17A Signaling Cascades to Promote Wnt-Dependent Tumor Development in the Intestine. Cancer Research, 2016, 76, 2587-2599.	0.9	21
14	Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy. Bioorganic and Medicinal Chemistry, 2015, 23, 2786-2797.	3.0	25
15	Dual-Specificity Phosphatase 3 Deficiency or Inhibition Limits Platelet Activation and Arterial Thrombosis. Circulation, 2015, 131, 656-668.	1.6	42
16	DUSP3 Genetic Deletion Confers M2-like Macrophage–Dependent Tolerance to Septic Shock. Journal of Immunology, 2015, 194, 4951-4962.	0.8	28
17	The <scp>RIAD</scp> peptidomimetic inhibits <scp>HIV</scp> â€4 replication in humanized <scp>NSG</scp> mice. European Journal of Clinical Investigation, 2014, 44, 146-152.	3.4	9
18	Minocycline attenuates <scp>HIV</scp> â€1 infection and suppresses chronic immune activation in humanized <scp>NOD</scp> /LtsZâ€scid <scp>IL</scp> â€2R <i>γ</i> ^{null} mice. Immunology, 2014, 142, 562-572.	4.4	19

Souad Rahmouni

#	Article	IF	CITATIONS
19	DUSP3/VHR is a pro-angiogenic atypical dual-specificity phosphatase. Molecular Cancer, 2014, 13, 108.	19.2	40
20	Evaluating Effects of Tyrosine Phosphatase Inhibitors on T Cell Receptor Signaling. Methods in Molecular Biology, 2013, 1053, 241-270.	0.9	3
21	LYP inhibits T-cell activation when dissociated from CSK. Nature Chemical Biology, 2012, 8, 437-446.	8.0	118
22	An Improved Protocol for Efficient Engraftment in NOD/LTSZ-SCIDIL-2RγNULL Mice Allows HIV Replication and Development of Anti-HIV Immune Responses. PLoS ONE, 2012, 7, e38491.	2.5	31
23	Dynamic interaction between lymphoid tyrosine phosphatase and Câ€ŧerminal Src kinase controls T cell activation. FASEB Journal, 2012, 26, 766.11.	0.5	Ο
24	Mice with Disrupted Type I Protein Kinase A Anchoring in T Cells Resist Retrovirus-Induced Immunodeficiency. Journal of Immunology, 2011, 186, 5119-5130.	0.8	17
25	Thymic self-antigens for the design of a negative/tolerogenic self-vaccination against type 1 diabetes. Current Opinion in Pharmacology, 2010, 10, 461-472.	3.5	23
26	Multidentate Small-Molecule Inhibitors of <i>Vaccinia</i> H1-Related (VHR) Phosphatase Decrease Proliferation of Cervix Cancer Cells. Journal of Medicinal Chemistry, 2009, 52, 6716-6723.	6.4	53
27	KCTD5, a putative substrate adaptor for cullin3 ubiquitin ligases. FEBS Journal, 2008, 275, 3900-3910.	4.7	75
28	Cervix carcinoma is associated with an up-regulation and nuclear localization of the dual-specificity protein phosphatase VHR. BMC Cancer, 2008, 8, 147.	2.6	53
29	Rottlerin inhibits human T cell responses. Biochemical Pharmacology, 2007, 73, 515-525.	4.4	26
30	Loss of the VHR dual-specific phosphatase causescell-cycle arrest and senescence. Nature Cell Biology, 2006, 8, 524-531.	10.3	114
31	Regulation of MAP Kinases by the VHR Dual-Specific Phosphatase – Implications for Cell Growth and Differentiation. Cell Cycle, 2006, 5, 2210-2215.	2.6	34
32	Lipid Raft Targeting of Hematopoietic Protein Tyrosine Phosphatase by Protein Kinase C Î,-Mediated Phosphorylation. Molecular and Cellular Biology, 2006, 26, 1806-1816.	2.3	32
33	Removal of C-Terminal Src Kinase from the Immune Synapse by a New Binding Protein. Molecular and Cellular Biology, 2005, 25, 2227-2241.	2.3	31
34	Lck Dephosphorylation at Tyr-394 and Inhibition of T Cell Antigen Receptor Signaling by Yersinia Phosphatase YopH. Journal of Biological Chemistry, 2004, 279, 4922-4928.	3.4	94
35	A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nature Genetics, 2004, 36, 337-338.	21.4	1,226
36	Protein tyrosine phosphatases in T cell physiology. Molecular Immunology, 2004, 41, 687-700.	2.2	84

#	Article	IF	CITATIONS
37	Cyclo-oxygenase type 2-dependent prostaglandin E2 secretion is involved in retrovirus-induced T-cell dysfunction in mice. Biochemical Journal, 2004, 384, 469-476.	3.7	27
38	Role of protein tyrosine phosphatases in T cell activation. Immunological Reviews, 2003, 191, 139-147.	6.0	56
39	Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nature Immunology, 2003, 4, 44-48.	14.5	94
40	Increased cAMP levels and protein kinase (PKA) type I activation in CD4+ T cells and B cells contribute to the retrovirusâ€induced immunodeficiency of mice (MAIDS). A useful in vivo model for drug testing in PKA type l―induced immunodeficiency. FASEB Journal, 2001, 15, 1466-1468.	0.5	20