
Xiaoping Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7638785/publications.pdf Version: 2024-02-01

XIAODING RAO

#	Article	IF	CITATIONS
1	Stimuliâ€Responsive Liquidâ€Crystalâ€Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion. Advanced Materials, 2022, 34, e2110085.	21.0	21
2	Robust genome and RNA editing via CRISPR nucleases in PiggyBac systems. Bioactive Materials, 2022, 14, 313-320.	15.6	7
3	Modularizable Liquidâ€Crystalâ€Based Open Surfaces Enable Programmable Chemical Transport and Feeding using Liquid Droplets. Advanced Materials, 2022, 34, e2108788.	21.0	15
4	Optogenetic Control of Engrafted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Live Mice: A Proof-of-Concept Study. Cells, 2022, 11, 951.	4.1	2
5	Chemically-defined generation of human hemogenic endothelium and definitive hematopoietic progenitor cells. Biomaterials, 2022, 285, 121569.	11.4	11
6	Temporal Expression of Transcription Factor <i>ID2</i> Improves Natural Killer Cell Differentiation from Human Pluripotent Stem Cells. ACS Synthetic Biology, 2022, 11, 2001-2008.	3.8	2
7	A dual cardiomyocyte reporter model derived from human pluripotent stem cells. Stem Cell Research and Therapy, 2021, 12, 305.	5.5	0
8	Optogeneticâ€mediated cardiovascular differentiation and patterning of human pluripotent stem cells. Genetics & Genomics Next, 2021, 2, e202100011.	1.5	7
9	Generation of pancreatic progenitors from human pluripotent stem cells by small molecules. Stem Cell Reports, 2021, 16, 2395-2409.	4.8	16
10	Ultrasensitive and Selective Detection of SARS-CoV-2ÂUsing Thermotropic Liquid Crystals and Image-Based Machine Learning. Cell Reports Physical Science, 2020, 1, 100276.	5.6	46
11	Adoptive natural killer cell therapy: a human pluripotent stem cell perspective. Current Opinion in Chemical Engineering, 2020, 30, 69-76.	7.8	3
12	High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates. Science Advances, 2020, 6, eaaz1457.	10.3	8
13	Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics. Cell Reports, 2020, 31, 107737.	6.4	47
14	Fluorescent indicators for continuous and lineageâ€specific reporting of cellâ€cycle phases in human pluripotent stem cells. Biotechnology and Bioengineering, 2020, 117, 2177-2186.	3.3	10
15	Sex-dependent VEGF expression underlies variations in human pluripotent stem cell to endothelial progenitor differentiation. Scientific Reports, 2019, 9, 16696.	3.3	12
16	Gene Editing to Generate Versatile Human Pluripotent Stem Cell Reporter Lines for Analysis of Differentiation and Lineage Tracing. Stem Cells, 2019, 37, 1556-1566.	3.2	13
17	Directed Differentiation of Human Pluripotent Stem Cells to Podocytes under Defined Conditions. Scientific Reports, 2019, 9, 2765.	3.3	25
18	Biomaterials for stem cell engineering and biomanufacturing. Bioactive Materials, 2019, 4, 366-379.	15.6	75

XIAOPING BAO

#	Article	IF	CITATIONS
19	An Ultrasensitive Calcium Reporter System via CRISPR-Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells. IScience, 2018, 9, 27-35.	4.1	16
20	Advances in applications of metabolomics in pluripotent stem cell research. Current Opinion in Chemical Engineering, 2017, 15, 36-43.	7.8	8
21	Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1649-1654.	7.1	53
22	Human pluripotent stem cellâ€derived epicardial progenitors can differentiate to endocardialâ€like endothelial cells. Bioengineering and Translational Medicine, 2017, 2, 191-201.	7.1	43
23	Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nature Biomedical Engineering, 2017, 1, .	22.5	86
24	Directed differentiation and long-term maintenance of epicardial cells derived from human pluripotent stem cells under fully defined conditions. Nature Protocols, 2017, 12, 1890-1900.	12.0	40
25	Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Science Advances, 2017, 3, e1701679.	10.3	177
26	An all-in-one, Tet-On 3G inducible PiggyBac system for human pluripotent stem cells and derivatives. Scientific Reports, 2017, 7, 1549.	3.3	45
27	Metabolomics Identifies Metabolic Markers of Maturation in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Theranostics, 2017, 7, 2078-2091.	10.0	31
28	Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions. Methods in Molecular Biology, 2016, 1481, 183-196.	0.9	21
29	Interrogating Canonical Wnt Signaling Pathway in Human Pluripotent Stem Cell Fate Decisions Using CRISPR-Cas9. Cellular and Molecular Bioengineering, 2016, 9, 325-334.	2.1	7
30	Sucrose Nonfermenting-Related Kinase Enzyme–Mediated Rho-Associated Kinase Signaling is Responsible for Cardiac Function. Circulation: Cardiovascular Genetics, 2016, 9, 474-486.	5.1	13
31	The Poly (ADP-Ribose) Polymerase Inhibitor Veliparib and Radiation Cause Significant Cell Line Dependent Metabolic Changes in Breast Cancer Cells. Scientific Reports, 2016, 6, 36061.	3.3	25
32	<i>Sucrose non-fermenting related kinase</i> enzyme is essential for cardiac metabolism. Biology Open, 2015, 4, 48-61.	1.2	20
33	Efficient Differentiation of Human Pluripotent Stem Cells to Endothelial Progenitors via Small-Molecule Activation of WNT Signaling. Stem Cell Reports, 2015, 4, 170.	4.8	1
34	Chemically defined, albumin-free human cardiomyocyte generation. Nature Methods, 2015, 12, 595-596.	19.0	129
35	Chemically-defined albumin-free differentiation of human pluripotent stem cells to endothelial progenitor cells. Stem Cell Research, 2015, 15, 122-129.	0.7	71
36	Efficient Differentiation of Human Pluripotent Stem Cells to Endothelial Progenitors via Small-Molecule Activation of WNT Signaling. Stem Cell Reports, 2014, 3, 804-816.	4.8	271

XIAOPING BAO

#	Article	IF	CITATIONS
37	Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nature Protocols, 2013, 8, 162-175.	12.0	1,353
38	A Small Molecule Inhibitor of Src Family Kinases Promotes Simple Epithelial Differentiation of Human Pluripotent Stem Cells. PLoS ONE, 2013, 8, e60016.	2.5	30
39	Activation and stabilization of a lipase nanogel using GMA for acryloylation. Soft Matter, 2012, 8, 2036.	2.7	10