
Ana Raquel Madureira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/763860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Simulated Human Gastrointestinal Digestion on the Bioactive Fraction of Upcycled Pineapple By-Products. Foods, 2022, 11, 126.	1.9	9
2	Comparative Analysis between Synthetic Vitamin E and Natural Antioxidant Sources from Tomato, Carrot and Coriander in Diets for Market-Sized Dicentrarchus labrax. Antioxidants, 2022, 11, 636.	2.2	10
3	Can Supplemented Skim Milk (SKM) Boost Your Gut Health?. Fermentation, 2022, 8, 126.	1.4	5
4	Prebiotic effect, bioactive compounds and antioxidant capacity of melon peel (Cucumis melo L.) Tj ETQq0 0 0 rg Research International, 2022, 154, 111045.	BT /Overlo 2.9	ck 10 Tf 50 6 10
5	Intake of nanoparticles and impact on gut microbiota: <i>in vitro</i> and animal models available for testing. Gut Microbiome, 2022, 3, .	0.8	5
6	Agro-food wastes: new sources of antioxidants. , 2022, , 197-227.		0
7	Biocontamination and diversity of epilithic bacteria and fungi colonising outdoor stone and mortar sculptures. Applied Microbiology and Biotechnology, 2022, 106, 3811-3828.	1.7	8
8	A chemical valorisation of melon peels towards functional food ingredients: Bioactives profile and antioxidant properties. Food Chemistry, 2021, 335, 127579.	4.2	43
9	Importance of gastrointestinal in vitro models for the poultry industry and feed formulations. Animal Feed Science and Technology, 2021, 271, 114730.	1.1	18
10	Non-compliant Fruit as New Functional Food Ingredients. Food Engineering Series, 2021, , 189-204.	0.3	0
11	Development of Frozen Pulps and Powders from Carrot and Tomato by-Products: Impact of Processing and Storage Time on Bioactive and Biological Properties. Horticulturae, 2021, 7, 185.	1.2	15
12	Biological protein precipitation: A green process for the extraction of cucumisin from melon (Cucumis melo L. inodorus) by-products. Food Hydrocolloids, 2021, 116, 106650.	5.6	10
13	Impact of Processing Approach and Storage Time on Bioactive and Biological Properties of Rocket, Spinach and Watercress Byproducts. Foods, 2021, 10, 2301.	1.9	12
14	Potential of sugarcane extracts as cosmetic and skincare ingredients. Industrial Crops and Products, 2021, 169, 113625.	2.5	24
15	Valorisation of food agro-industrial by-products: From the past to the present and perspectives. Journal of Environmental Management, 2021, 299, 113571.	3.8	63
16	Preservation of Human Gut Microbiota Inoculums for In Vitro Fermentations Studies. Fermentation, 2021, 7, 14.	1.4	19
17	Preparation, Characterization and Evaluation of Guar Films Impregnated with Relaxing Peptide Loaded into Chitosan Microparticles. Applied Sciences (Switzerland), 2021, 11, 9849.	1.3	6
18	The potential of insects as food sources – a review. Critical Reviews in Food Science and Nutrition, 2020, 60, 3642-3652.	5.4	59

Ana Raquel Madureira

#	Article	IF	CITATIONS
19	Polyphenol Extraction by Different Techniques for Valorisation of Non-Compliant Portuguese Sweet Cherries towards a Novel Antioxidant Extract. Sustainability, 2020, 12, 5556.	1.6	20
20	Impact of functional flours from pineapple by-products on human intestinal microbiota. Journal of Functional Foods, 2020, 67, 103830.	1.6	40
21	Integral Valorization of Pineapple (Ananas comosus L.) By-Products through a Green Chemistry Approach towards Added Value Ingredients. Foods, 2020, 9, 60.	1.9	69
22	Management of Fruit Industrial By-Products—A Case Study on Circular Economy Approach. Molecules, 2020, 25, 320.	1.7	180
23	Valorization of melon fruit (Cucumis melo L.) by-products: Phytochemical and Biofunctional properties with Emphasis on Recent Trends and Advances. Trends in Food Science and Technology, 2020, 99, 507-519.	7.8	63
24	Organic nanocomposites for the delivery of bioactive molecules. , 2019, , 471-493.		1
25	Study of in vitro digestion of Tenebrio molitor flour for evaluation of its impact on the human gut microbiota. Journal of Functional Foods, 2019, 59, 101-109.	1.6	31
26	Film-nanoparticle composite for enhanced oral delivery of alpha-casozepine. Colloids and Surfaces B: Biointerfaces, 2019, 181, 149-157.	2.5	25
27	Potential prebiotic activity of Tenebrio molitor insect flour using an optimized in vitro gut microbiota model. Food and Function, 2019, 10, 3909-3922.	2.1	17
28	Development and Characterization of Chitosan Microparticles-in-Films for Buccal Delivery of Bioactive Peptides. Pharmaceuticals, 2019, 12, 32.	1.7	47
29	Optimization of bromelain isolation from pineapple byproducts by polysaccharide complex formation. Food Hydrocolloids, 2019, 87, 792-804.	5.6	31
30	Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules. Carbohydrate Polymers, 2018, 194, 411-421.	5.1	32
31	Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides, 2018, 101, 112-123.	1.2	71
32	Nanoencapsulation of Polyphenols towards Dairy Beverage Incorporation. Beverages, 2018, 4, 61.	1.3	13
33	Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. International Journal of Pharmaceutics, 2018, 547, 593-601.	2.6	63
34	Novel Eco-Friendly Method to Extract Keratin from Hair. ACS Sustainable Chemistry and Engineering, 2018, 6, 12268-12274.	3.2	30
35	Oral Administration of Nanoparticles and Gut Microbiota–Mediated Effects. , 2018, , 111-132.		1
36	Extraction and characterisation of cellulose nanocrystals from pineapple peel. International Journal of Food Studies, 2018, 7, .	0.5	0

#	Article	IF	CITATIONS
37	Therapeutic and Nutraceutical Potential of Rosmarinic Acid - Cytoprotective Properties and Pharmacokinetic Profile. Critical Reviews in Food Science and Nutrition, 2017, 57, 00-00.	5.4	65
38	Optimization of two biopolymer-based oral films for the delivery of bioactive molecules. Materials Science and Engineering C, 2017, 76, 171-180.	3.8	28
39	Chitosan nanoparticles as alternative anti-staphylococci agents: Bactericidal, antibiofilm and antiadhesive effects. Materials Science and Engineering C, 2017, 79, 221-226.	3.8	63
40	Platform design for extraction and isolation of Bromelain: Complex formation and precipitation with carrageenan. Process Biochemistry, 2017, 54, 156-161.	1.8	13
41	Technological stability of solid lipid nanoparticles loaded with phenolic compounds: Drying process and stability along storage. Journal of Food Engineering, 2017, 196, 1-10.	2.7	19
42	Tissue-based in vitro and ex vivo models for buccal permeability studies. , 2016, , 189-202.		3
43	Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches. International Journal of Nanomedicine, 2016, Volume 11, 3621-3640.	3.3	48
44	NMR water transverse relaxation time approach to understand storage stability of fresh-cut â€~Rocha' pear. LWT - Food Science and Technology, 2016, 74, 280-285.	2.5	28
45	Edible films as carrier for lactic acid bacteria. LWT - Food Science and Technology, 2016, 73, 543-550.	2.5	89
46	Insights into the protective role of solid lipid nanoparticles on rosmarinic acid bioactivity during exposure to simulated gastrointestinal conditions. Colloids and Surfaces B: Biointerfaces, 2016, 139, 277-284.	2.5	37
47	Chitosan nanoparticles loaded with 2,5-dihydroxybenzoic acid and protocatechuic acid: Properties and digestion. Journal of Food Engineering, 2016, 174, 8-14.	2.7	13
48	Fermentation of bioactive solid lipid nanoparticles by human gut microflora. Food and Function, 2016, 7, 516-529.	2.1	31
49	Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydrate Polymers, 2015, 130, 429-439.	5.1	52
50	Characterization of solid lipid nanoparticles produced with carnauba wax for rosmarinic acid oral delivery. RSC Advances, 2015, 5, 22665-22673.	1.7	66
51	Stability of bioactive solid lipid nanoparticles loaded with herbal extracts when exposed to simulated gastrointestinal tract conditions. Food Research International, 2015, 78, 131-140.	2.9	37
52	Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. Pharmaceutical Biology, 2015, 53, 642-652.	1.3	61
53	Effect of the incorporation of salted additives on probiotic whey cheeses. Food Bioscience, 2015, 10, 8-17.	2.0	9
54	Solid Lipid Nanoparticles as Oral Delivery Systems of Phenolic Compounds: Overcoming Pharmacokinetic Limitations for Nutraceutical Applications. Critical Reviews in Food Science and Nutrition, 2015, 57, 00-00.	5.4	43

#	Article	IF	CITATIONS
55	Production of antimicrobial chitosan nanoparticles against food pathogens. Journal of Food Engineering, 2015, 167, 210-216.	2.7	62
56	Development of Oral Strips Containing Chitosan as Active Ingredient: A Product for Buccal Health. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 906-918.	1.8	7
57	Oral films as breakthrough tools for oral delivery of proteins/peptides. Journal of Controlled Release, 2015, 211, 63-73.	4.8	51
58	Fresh-cut melon quality during storage: An NMR study of water transverse relaxation time. Journal of Food Engineering, 2015, 167, 71-76.	2.7	26
59	Apical periodontitis and related risk factors: Cross-sectional study. Revista Portuguesa De Estomatologia, Medicina Dentaria E Cirurgia Maxilofacial, 2015, 56, 226-232.	0.1	11
60	Evaluation of the interactions between rosmarinic acid and bovine milk casein. RSC Advances, 2015, 5, 88529-88538.	1.7	20
61	Study of the interactions between rosmarinic acid and bovine milk whey protein α-Lactalbumin, β-Lactoglobulin and Lactoferrin. Food Research International, 2015, 77, 450-459.	2.9	80
62	Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid. Colloids and Surfaces B: Biointerfaces, 2014, 115, 109-117.	2.5	52
63	Chitosan mouthwash: Toxicity and in vivo validation. Carbohydrate Polymers, 2014, 111, 385-392.	5.1	28
64	Addition of probiotic bacteria in a semi-hard goat cheese (coalho): Survival to simulated gastrointestinal conditions and inhibitory effect against pathogenic bacteria. Food Research International, 2014, 64, 241-247.	2.9	53
65	A comprehensive study into the impact of a chitosan mouthwash upon oral microorganism's biofilm formation in vitro. Carbohydrate Polymers, 2014, 101, 1081-1086.	5.1	83
66	Bioactivity of probiotic whey cheese: characterization of the content of peptides and organic acids. Journal of the Science of Food and Agriculture, 2013, 93, 1458-1465.	1.7	23
67	A novel direct contact method for the assessment of the antimicrobial activity of dental cements. Journal of Microbiological Methods, 2013, 93, 168-172.	0.7	5
68	Effect of in vitro digestion upon the antioxidant capacity of aqueous extracts of Agrimonia eupatoria, Rubus idaeus, Salvia sp. and Satureja montana. Food Chemistry, 2012, 131, 761-767.	4.2	52
69	Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Research International, 2011, 44, 465-470.	2.9	450
70	Rheological, textural and microstructural features of probiotic whey cheeses. LWT - Food Science and Technology, 2011, 44, 75-81.	2.5	16
71	Technological Optimization of Manufacture of Probiotic Whey Cheese Matrices. Journal of Food Science, 2011, 76, E203-11.	1.5	10
72	Incorporation of Probiotic Bacteria in Whey Cheese: Decreasing the Risk of Microbial Contamination. Journal of Food Protection, 2011, 74, 1194-1199.	0.8	24

#	Article	IF	CITATIONS
73	Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science, 2010, 93, 437-455.	1.4	275
74	Sweet whey cheese matrices inoculated with the probiotic strainLactobacillusÂparacaseiLAFTI®L26. Dairy Science and Technology, 2008, 88, 649-665.	2.2	27
75	Bovine whey proteins – Overview on their main biological properties. Food Research International, 2007, 40, 1197-1211.	2.9	414
76	Survival of probiotic bacteria in a whey cheese vector submitted to environmental conditions prevailing in the gastrointestinal tract. International Dairy Journal, 2005, 15, 921-927.	1.5	82
77	Incorporation and Survival of Probiotic Bacteria in Whey Cheese Matrices. Journal of Food Science, 2005, 70, M160-M165.	1.5	18