Wiyada Mongkolthanaruk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7638353/publications.pdf

Version: 2024-02-01

552781 623734 29 718 14 26 citations h-index g-index papers 29 29 29 780 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	New furan derivatives from <i>Annulohypoxylon spougei</i> fungus. Journal of Asian Natural Products Research, 2022, 24, 971-978.	1.4	1
2	Nanoporous Magnetic Carbon Nanofiber Aerogels with Embedded α-Fe/γ-Fe Core–Shell Nanoparticles for Oil Sorption and Recovery. ACS Applied Nano Materials, 2022, 5, 2885-2896.	5.0	21
3	Flexible Thermoelectric Paper and Its Thermoelectric Generator from Bacterial Cellulose/Ag ₂ Se Nanocomposites. ACS Applied Energy Materials, 2022, 5, 3489-3501.	5.1	14
4	Synthesis and Characterization of a Magnetic Carbon Nanofiber Derived from Bacterial Cellulose for the Removal of Diclofenac from Water. ACS Omega, 2022, 7, 7572-7584.	3.5	7
5	A simple method for fabricating flexible thermoelectric nanocomposites based on bacterial cellulose nanofiber and Ag2Se. Applied Physics Letters, 2022, 120, .	3.3	15
6	A new α-pyrone derivative from <i>Annulohypoxylon stygium</i> SWUF09-030. Journal of Asian Natural Products Research, 2021, 23, 1182-1188.	1.4	5
7	Anti-inflammatory and cytotoxic agents from <i>Xylaria</i> sp. SWUF09-62 fungus. Natural Product Research, 2021, 35, 2010-2019.	1.8	13
8	Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Scientific Reports, 2021, 11, 6501.	3.3	29
9	Growth enhancement of sunchoke by arbuscular mycorrhizal fungi under drought condition. Rhizosphere, 2021, 17, 100308.	3.0	20
10	Hard magnetic membrane based on bacterial cellulose – Barium ferrite nanocomposites. Carbohydrate Polymers, 2021, 264, 118016.	10.2	15
11	Co2P2O7 Microplate/Bacterial Cellulose–Derived Carbon Nanofiber Composites with Enhanced Electrochemical Performance. Nanomaterials, 2021, 11, 2015.	4.1	8
12	The first member of Exserohilum rostratum beneficial for promoting growth and yield of sunchoke (Helianthus tuberosus L.). Rhizosphere, 2021, 19, 100379.	3.0	7
13	Anti-inflammatory and anti-proliferative activities of chemical constituents from fungus Biscogniauxia whalleyi SWUF13-085. Phytochemistry, 2021, 191, 112908.	2.9	7
14	Co-Inoculation of an Endophytic and Arbuscular Mycorrhizal Fungus Improve Growth and Yield of Helianthus tuberosus L. under Field Condition. Journal of Fungi (Basel, Switzerland), 2021, 7, 976.	3.5	9
15	Chemical constituents and cytotoxic activity from the wood-decaying fungus <i>Xylaria </i> sp. SWUF08-37. Natural Product Research, 2020, 34, 464-473.	1.8	7
16	Magnetic bacterial cellulose and carbon nanofiber aerogel by simple immersion and pyrolysis. Journal of Materials Science, 2020, 55, 4113-4126.	3.7	20
17	Engineering Bacterial Cellulose Films by Nanocomposite Approach and Surface Modification for Biocompatible Triboelectric Nanogenerator. ACS Applied Electronic Materials, 2020, 2, 2498-2506.	4.3	69
18	Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Scientific Reports, 2020, 10, 4916.	3.3	85

#	Article	IF	CITATIONS
19	Carbon Nanofiber Aerogel/Magnetic Core–Shell Nanoparticle Composites as Recyclable Oil Sorbents. ACS Applied Nano Materials, 2020, 3, 3939-3950.	5.0	44
20	Endophytic Bacteria Improve Root Traits, Biomass and Yield of Helianthus tuberosus L. under Normal and Deficit Water Conditi. Journal of Microbiology and Biotechnology, 2019, 29, 1777-1789.	2.1	37
21	Magnetically responsive and flexible bacterial cellulose membranes. Carbohydrate Polymers, 2018, 192, 251-262.	10.2	34
22	Effect of Oregano Essential Oil Content on Properties of Green Biocomposites Based on Cassava Starch and Sugarcane Bagasse for Bioactive Packaging. Journal of Polymers and the Environment, 2018, 26, 311-318.	5.0	34
23	Bioactive Starch Foam Composite Enriched With Natural Antioxidants from Spent Coffee Ground and Essential Oil. Starch/Staerke, 2018, 70, 1700238.	2.1	31
24	A new amino amidine derivative from the wood-decaying fungus <i>Xylaria</i> cf. <i>cubensis</i> SWUF08-86. Natural Product Research, 2018, 32, 2260-2267.	1.8	9
25	White magnetic paper based on a bacterial cellulose nanocomposite. Journal of Materials Chemistry C, 2018, 6, 11427-11435.	5 . 5	30
26	Polyvinyl Alcohol (PVA)/Starch Bioactive Packaging Film Enriched with Antioxidants from Spent Coffee Ground and Citric Acid. Journal of Polymers and the Environment, 2018, 26, 3762-3772.	5.0	55
27	A new cerebroside and the cytotoxic constituents isolated from Xylaria allantoidea SWUF76. Natural Product Research, 2017, 31, 1422-1430.	1.8	19
28	Chemical Constituents, and their Cytotoxicity, of the Rare Wood Decaying Fungus Xylaria humosa. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	6
29	Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals. Journal of Microbiology and Biotechnology, 2012, 22, 1597-1604.	2.1	67