Wiyada Mongkolthanaruk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7638353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Scientific Reports, 2020, 10, 4916.	3.3	85
2	Engineering Bacterial Cellulose Films by Nanocomposite Approach and Surface Modification for Biocompatible Triboelectric Nanogenerator. ACS Applied Electronic Materials, 2020, 2, 2498-2506.	4.3	69
3	Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals. Journal of Microbiology and Biotechnology, 2012, 22, 1597-1604.	2.1	67
4	Polyvinyl Alcohol (PVA)/Starch Bioactive Packaging Film Enriched with Antioxidants from Spent Coffee Ground and Citric Acid. Journal of Polymers and the Environment, 2018, 26, 3762-3772.	5.0	55
5	Carbon Nanofiber Aerogel/Magnetic Core–Shell Nanoparticle Composites as Recyclable Oil Sorbents. ACS Applied Nano Materials, 2020, 3, 3939-3950.	5.0	44
6	Endophytic Bacteria Improve Root Traits, Biomass and Yield of Helianthus tuberosus L. under Normal and Deficit Water Conditi. Journal of Microbiology and Biotechnology, 2019, 29, 1777-1789.	2.1	37
7	Magnetically responsive and flexible bacterial cellulose membranes. Carbohydrate Polymers, 2018, 192, 251-262.	10.2	34
8	Effect of Oregano Essential Oil Content on Properties of Green Biocomposites Based on Cassava Starch and Sugarcane Bagasse for Bioactive Packaging. Journal of Polymers and the Environment, 2018, 26, 311-318.	5.0	34
9	Bioactive Starch Foam Composite Enriched With Natural Antioxidants from Spent Coffee Ground and Essential Oil. Starch/Staerke, 2018, 70, 1700238.	2.1	31
10	White magnetic paper based on a bacterial cellulose nanocomposite. Journal of Materials Chemistry C, 2018, 6, 11427-11435.	5.5	30
11	Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Scientific Reports, 2021, 11, 6501.	3.3	29
12	Nanoporous Magnetic Carbon Nanofiber Aerogels with Embedded α-Fe/γ-Fe Core–Shell Nanoparticles for Oil Sorption and Recovery. ACS Applied Nano Materials, 2022, 5, 2885-2896.	5.0	21
13	Magnetic bacterial cellulose and carbon nanofiber aerogel by simple immersion and pyrolysis. Journal of Materials Science, 2020, 55, 4113-4126.	3.7	20
14	Growth enhancement of sunchoke by arbuscular mycorrhizal fungi under drought condition. Rhizosphere, 2021, 17, 100308.	3.0	20
15	A new cerebroside and the cytotoxic constituents isolated from Xylaria allantoidea SWUF76. Natural Product Research, 2017, 31, 1422-1430.	1.8	19
16	Hard magnetic membrane based on bacterial cellulose – Barium ferrite nanocomposites. Carbohydrate Polymers, 2021, 264, 118016.	10.2	15
17	A simple method for fabricating flexible thermoelectric nanocomposites based on bacterial cellulose nanofiber and Ag2Se. Applied Physics Letters, 2022, 120,	3.3	15
18	Flexible Thermoelectric Paper and Its Thermoelectric Generator from Bacterial Cellulose/Ag ₂ Se Nanocomposites. ACS Applied Energy Materials, 2022, 5, 3489-3501.	5.1	14

#	Article	IF	CITATIONS
19	Anti-inflammatory and cytotoxic agents from <i>Xylaria</i> sp. SWUF09-62 fungus. Natural Product Research, 2021, 35, 2010-2019.	1.8	13
20	A new amino amidine derivative from the wood-decaying fungus <i>Xylaria</i> cf. <i>cubensis</i> SWUF08-86. Natural Product Research, 2018, 32, 2260-2267.	1.8	9
21	Co-Inoculation of an Endophytic and Arbuscular Mycorrhizal Fungus Improve Growth and Yield of Helianthus tuberosus L. under Field Condition. Journal of Fungi (Basel, Switzerland), 2021, 7, 976.	3.5	9
22	Co2P2O7 Microplate/Bacterial Cellulose–Derived Carbon Nanofiber Composites with Enhanced Electrochemical Performance. Nanomaterials, 2021, 11, 2015.	4.1	8
23	Chemical constituents and cytotoxic activity from the wood-decaying fungus <i>Xylaria</i> sp. SWUF08-37. Natural Product Research, 2020, 34, 464-473.	1.8	7
24	The first member of Exserohilum rostratum beneficial for promoting growth and yield of sunchoke (Helianthus tuberosus L.). Rhizosphere, 2021, 19, 100379.	3.0	7
25	Anti-inflammatory and anti-proliferative activities of chemical constituents from fungus Biscogniauxia whalleyi SWUF13-085. Phytochemistry, 2021, 191, 112908.	2.9	7
26	Synthesis and Characterization of a Magnetic Carbon Nanofiber Derived from Bacterial Cellulose for the Removal of Diclofenac from Water. ACS Omega, 2022, 7, 7572-7584.	3.5	7
27	Chemical Constituents, and their Cytotoxicity, of the Rare Wood Decaying Fungus Xylaria humosa. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	6
28	A new α-pyrone derivative from <i>Annulohypoxylon stygium</i> SWUF09-030. Journal of Asian Natural Products Research, 2021, 23, 1182-1188.	1.4	5
29	New furan derivatives from <i>Annulohypoxylon spougei</i> fungus. Journal of Asian Natural Products Research, 2022, 24, 971-978.	1.4	1