Xiao Kuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/763832/publications.pdf

Version: 2024-02-01

114418 94381 6,551 66 37 63 h-index citations g-index papers 67 67 67 5940 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Fast and sustainable recycling of epoxy and composites using mixed solvents. Polymer Degradation and Stability, 2022, 199, 109895.	2.7	18
2	Recyclable thermoset polymers: beyond self-healing. , 2022, , 483-511.		3
3	Magnetoâ€Mechanical Metamaterials with Widely Tunable Mechanical Properties and Acoustic Bandgaps. Advanced Functional Materials, 2021, 31, 2005319.	7.8	115
4	Recyclable thermosetting polymers for digital light processing 3D printing. Materials and Design, 2021, 197, 109189.	3.3	74
5	Fused filament fabrication of polymer materials: A review of interlayer bond. Additive Manufacturing, 2021, 37, 101658.	1.7	88
6	Dynamic Bonds Mediate π-π Interaction via Phase Locking Effect for Enhanced Heat Resistant Thermoplastic Polyurethane. Chinese Journal of Polymer Science (English Edition), 2021, 39, 154-163.	2.0	26
7	4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness. ACS Applied Materials & Amp; Interfaces, 2021, 13, 12797-12804.	4.0	28
8	Magnetic Multimaterial Printing for Multimodal Shape Transformation with Tunable Properties and Shiftable Mechanical Behaviors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12639-12648.	4.0	101
9	Introduction to 4D printing. , 2021, , 303-342.		6
10	Shapeâ€Memory Balloon Structures by Pneumatic Multiâ€material 4D Printing. Advanced Functional Materials, 2021, 31, 2010872.	7.8	30
11	Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Additive Manufacturing, 2021, 40, 101911.	1.7	73
12	Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures. Advanced Materials, 2021, 33, e2102113.	11.1	88
13	The 3D printing and modeling of functionally graded Kelvin foams for controlling crushing performance. Extreme Mechanics Letters, 2021, 46, 101323.	2.0	18
14	Reprogrammable Materials: Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures (Adv. Mater. 30/2021). Advanced Materials, 2021, 33, 2170236.	11.1	0
15	Leveraging synthesis-swelling relationship to precisely engineer synthetic hydrogels. Matter, 2021, 4, 2676-2678.	5.0	4
16	Design for the reduction of volume shrinkage-induced distortion in digital light processing 3D printing. Extreme Mechanics Letters, 2021, 48, 101403.	2.0	25
17	Organic light-emitting diode microdisplay-enabled scalable visible-light 3D printing. Matter, 2021, 4, 3794-3797.	5.0	5
18	Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation. Advanced Materials, 2020, 32, e1906657.	11.1	367

#	Article	IF	CITATIONS
19	Surface modification of fused filament fabrication (FFF) 3D printed substrates by inkjet printing polyimide for printed electronics. Additive Manufacturing, 2020, 36, 101544.	1.7	23
20	Recent advances in additive manufacturing of active mechanical metamaterials. Current Opinion in Solid State and Materials Science, 2020, 24, 100869.	5.6	65
21	Modular 4D Printing Assisted by Dynamic Chemical Bonds. Matter, 2020, 2, 1080-1082.	5.0	9
22	Modeling the dissolution of thermosetting polymers and composites via solvent assisted exchange reactions. Composites Part B: Engineering, 2020, 200, 108363.	5.9	19
23	Rapid Volatilization Induced Mechanically Robust Shape-Morphing Structures toward 4D Printing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17979-17987.	4.0	50
24	Materials, design, and fabrication of shape programmable polymers. Multifunctional Materials, 2020, 3, 032002.	2.4	17
25	Ultrastrong intrinsic bonding for thermoset composites via bond exchange reactions. Composites Part B: Engineering, 2020, 194, 108054.	5.9	14
26	Shape-programmable and healable materials and devices using thermo- and photo-responsive vitrimer. Multifunctional Materials, 2020, 3, 045001.	2.4	19
27	The m4 3D printer: A multi-material multi-method additive manufacturing platform for future 3D printed structures. Additive Manufacturing, 2019, 29, 100819.	1.7	79
28	Ligninâ€polystyrene composite foams through high internal phase emulsion polymerization. Polymer Engineering and Science, 2019, 59, 964-972.	1.5	16
29	Dynamic Photomaskâ€Assisted Direct Ink Writing Multimaterial for Multilevel Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1903568.	7.8	65
30	Grayscale digital light processing 3D printing for highly functionally graded materials. Science Advances, 2019, 5, eaav5790.	4.7	298
31	Long Liquid Crystal Elastomer Fibers with Large Reversible Actuation Strains for Smart Textiles and Artificial Muscles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19514-19521.	4.0	168
32	Reaction-Diffusion Model for Thermosetting Polymer Dissolution through Exchange Reactions Assisted by Small-Molecule Solvents. Macromolecules, 2019, 52, 3636-3645.	2.2	32
33	Cellulose nanocrystals support material for 3D printing complexly shaped structures via multi-materials-multi-methods printing. Additive Manufacturing, 2019, 28, 14-22.	1.7	36
34	Extraction of Biolubricant via Chemical Recycling of Thermosetting Polymers. ACS Sustainable Chemistry and Engineering, 2019, 7, 6880-6888.	3.2	39
35	3D printed cellulose nanocrystal composites through digital light processing. Cellulose, 2019, 26, 3973-3985.	2.4	65
36	Recycling Waste Circuit Board Efficiently and Environmentally Friendly through Small-Molecule Assisted Dissolution. Scientific Reports, 2019, 9, 17902.	1.6	31

3

#	Article	IF	Citations
37	Advances in 4D Printing: Materials and Applications. Advanced Functional Materials, 2019, 29, 1805290.	7.8	633
38	Vitrimer Elastomerâ€Based Jigsaw Puzzleâ€Like Healable Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Materials, 2018, 30, e1705918.	11.1	265
39	3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7381-7388.	4.0	382
40	Highâ€Speed 3D Printing of Highâ€Performance Thermosetting Polymers via Twoâ€Stage Curing. Macromolecular Rapid Communications, 2018, 39, e1700809.	2.0	146
41	Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter, 2018, 14, 1879-1886.	1.2	150
42	Dissolution of epoxy thermosets <i>via</i> mild alcoholysis: the mechanism and kinetics study. RSC Advances, 2018, 8, 1493-1502.	1.7	68
43	Shape Memory Polymers for Body Motion Energy Harvesting and Selfâ€Powered Mechanosensing. Advanced Materials, 2018, 30, 1705195.	11.1	249
44	Evolution of material properties during free radical photopolymerization. Journal of the Mechanics and Physics of Solids, 2018, 112, 25-49.	2.3	124
45	Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Materials and Structures, 2018, 27, 125011.	1.8	149
46	Intense pulsed light sintering of thick conductive wires on elastomeric dark substrate for hybrid 3D printing applications. Smart Materials and Structures, 2018, 27, 115007.	1.8	17
47	3D printing of complex origami assemblages for reconfigurable structures. Soft Matter, 2018, 14, 8051-8059.	1.2	58
48	Reversible shape change structures by grayscale pattern 4D printing. Multifunctional Materials, 2018, 1, 015002.	2.4	73
49	Recycling of Epoxy Thermoset and Composites via Good Solvent Assisted and Small Molecules Participated Exchange Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 9189-9197.	3.2	161
50	Colorless, Transparent, Robust, and Fast Scratchâ€Selfâ€Healing Elastomers via a Phaseâ€Locked Dynamic Bonds Design. Advanced Materials, 2018, 30, e1802556.	11.1	448
51	Hydrophilic/Hydrophobic Composite Shape-Shifting Structures. ACS Applied Materials & amp; Interfaces, 2018, 10, 19932-19939.	4.0	101
52	Surface modification of polyimide fibers by novel alkaline–solvent hydrolysis to form highâ€performance fiberâ€reinforced composites. Journal of Applied Polymer Science, 2018, 135, 46595.	1.3	8
53	Facile and controllable synthesis of hybrid silica nanoparticles densely grafted with poly(ethylene) Tj ETQq1 1 0.7	'84314 rgl 1.6	BT/Qverlock
54	A simplified chemorheological model of viscosity evolution for solvent containing resol resin in <scp>RTM</scp> process. Journal of Applied Polymer Science, 2017, 134, 45282.	1.3	9

#	Article	IF	CITATION
55	Recyclable 3D printing of vitrimer epoxy. Materials Horizons, 2017, 4, 598-607.	6.4	339
56	Digital light processing 3D printing of conductive complex structures. Additive Manufacturing, 2017, 18, 74-83.	1.7	225
57	3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter, 2017, 13, 5558-5568.	1.2	223
58	Correlation between stress relaxation dynamics and thermochemistry for covalent adaptive networks polymers. Materials Chemistry Frontiers, 2017, 1, 111-118.	3.2	77
59	Polymerization induced viscoelastic phase separation of porous phenolic resin from solution. Polymer International, 2016, 65, 1031-1038.	1.6	8
60	Enhancement of Mechanical and Selfâ€Healing Performance in Multiwall Carbon Nanotube/Rubber Composites via Diels–Alder Bonding. Macromolecular Materials and Engineering, 2016, 301, 535-541.	1.7	85
61	Triple-shape memory epoxy based on Diels–Alder adduct molecular switch. Polymer, 2016, 84, 1-9.	1.8	83
62	Enhanced Crystallization Rate of Poly(<scp>l</scp> -lactide) Mediated by a Hydrazide Compound: Nucleating Mechanism Study. Macromolecular Chemistry and Physics, 2015, 216, 1134-1145.	1.1	48
63	Facile fabrication of fast recyclable and multiple selfâ€healing epoxy materials through dielsâ€alder adduct crossâ€linker. Journal of Polymer Science Part A, 2015, 53, 2094-2103.	2.5	138
64	Functional polyester with widely tunable mechanical properties: The role of reversible cross-linking and crystallization. Polymer, 2015, 65, 202-209.	1.8	21
65	Electrostatic Assembly of Peptide Nanofiber–Biomimetic Silver Nanowires onto Graphene for Electrochemical Sensors. ACS Macro Letters, 2014, 3, 529-533.	2.3	117
66	TAILORING THE TENSILE PROPERTIES OF OLEFIN BLOCK COPOLYMER ELASTOMER BY HIGH DENSITY	0.0	0