
Nicholas J Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7638274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultraviolet light tunable single walled carbon nanotubes/n-Si junction diode. Synthetic Metals, 2022, 283, 116967.	3.9	4
2	Temperature dependent charge transport in ferroelectrically gated graphene far from the Dirac point. AIP Advances, 2022, 12, 075008.	1.3	1
3	Ionic liquid gated poly(triaryl amine) thin film field effect transistor. Journal of Applied Polymer Science, 2021, 138, 50361.	2.6	0
4	Impurity charge compensation in graphene by a polarized ferroelectric polymer and its effect on charge transport near the Dirac point. AIP Advances, 2021, 11, .	1.3	1
5	Controlled doping of graphene by impurity charge compensation via a polarized ferroelectric polymer. Journal of Applied Physics, 2020, 127, .	2.5	6
6	Ionic liquid gel gate tunable p-Si/MoS2 heterojunction p-n diode. AIP Advances, 2020, 10, 125225.	1.3	3
7	Tunable Organic Polymer/Inorganic Silicon Diode Using an Ionic Liquid Gel Gate Dielectric. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900358.	1.8	1
8	Effect of polyethylene oxide on camphor sulfonic acid doped polyaniline thin film field effect transistor with ionic liquid gating. Synthetic Metals, 2019, 257, 116176.	3.9	6
9	Effect of varying the gate voltage scan rate in a MoS ₂ /ferroelectric polymer field effect transistor. Ferroelectrics, 2019, 550, 1-11.	0.6	5
10	Rectifying effect in a MoS2 monolayer crossed with an electro-spun PEDOT-PSS nano-ribbon. SN Applied Sciences, 2019, 1, 1.	2.9	1
11	PEDOT-PSS nanoribbon and cast film field effect transistors with ferroelectric gating. Synthetic Metals, 2019, 247, 151-156.	3.9	4
12	Ambipolar transport in CVD grown MoSe2 monolayer using an ionic liquid gel gate dielectric. AIP Advances, 2018, 8, .	1.3	14
13	Ionic liquid gel gated electro-spun poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic) Tj ETQq1	1 0.78431 1.8	4 ggBT /Ove
14	Temperature-dependent charge transport mechanisms in carbon sphere/polyaniline composite. AIP Advances, 2017, 7, 125229.	1.3	4
15	Poly(lactic acid)/poly(3â€hexylthiophene) composite nanofiber fabrication for electronic applications. Polymer International, 2016, 65, 503-507.	3.1	16
16	Electron transport mechanisms in polymer-carbon sphere composites. Journal of Applied Physics, 2016, 120, .	2.5	5
17	MoS2 based dual input logic AND gate. AIP Advances, 2016, 6, 125041.	1.3	4
18	Monolayer WS2 crossed with an electro-spun PEDOT-PSS nano-ribbon: Fabricating a Schottky diode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 214, 68-73.	3.5	7

NICHOLAS J PINTO

#	Article	IF	CITATIONS
19	Facile fabrication of carbon spheres/n-Si junction diodes based on sucrose. Journal of Materials Science: Materials in Electronics, 2016, 27, 13044-13051.	2.2	6
20	Facile fabrication of a ultraviolet tunable MoS2/ <i>p</i> -Si junction diode. Applied Physics Letters, 2015, 106, .	3.3	21
21	Electrospinning of Electro-Active Materials: Devices Based on Individual and Crossed Nanofibers. Nanoscience and Technology, 2015, , 103-113.	1.5	2
22	Sensor response of electrospun poly(lactic acid)/polyaniline nanofibers to aliphatic alcohol vapors of varying sizes. , 2014, , .		4
23	Electrospun composite poly(lactic acid)/polyaniline nanofibers fromÂlow concentrations in CHCl3: Making a biocompatible polyesterÂelectro-active. Polymer, 2014, 55, 5727-5733.	3.8	20
24	Electrospun Fibers of Poly(Vinylidene Fluoride-Trifluoroethylene)/Poly(3-Hexylthiophene) Blends from Tetrahydrofuran. Ferroelectrics, 2012, 432, 41-48.	0.6	9
25	Controlled doping of graphene using ultraviolet irradiation. Applied Physics Letters, 2012, 100, 253108.	3.3	94
26	Tunable Schottky diodes fabricated from crossed electrospun SnO2/PEDOT-PSSA nanoribbons. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 805-809.	3.5	9
27	Electrospun composite nanofibers of poly (vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 427 Td (fluor 2011, 119, 3640-3644.	rideâ€triflı 2.6	uoroethylena 5
28	Electrical response of electrospun PEDOT-PSSA nanofibers to organic and inorganic gases. Sensors and Actuators B: Chemical, 2011, 156, 849-853.	7.8	40
29	Rectifying junctions of tin oxide and poly(3-hexylthiophene) nanofibers fabricated via electrospinning. Applied Physics Letters, 2009, 94, .	3.3	22
30	Fabrication of Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 307 Td (fluorideâ^'trifluoroethylene)/Poly(3,4 Nanofibers via Electrospinning. Macromolecules, 2009, 42, 7924-7929.	-ethylenec 4.8	dioxythiophe 31
31	Electric response of isolated electrospun polyaniline nanofibers to vapors of aliphatic alcohols. Sensors and Actuators B: Chemical, 2008, 129, 621-627.	7.8	91
32	Two experiments in physics based on electrospun polymer nanofibers. American Journal of Physics, 2008, 76, 1163-1167.	0.7	2
33	Using Electrospinning for the Fabrication of Rapid Response Gas Sensors Based on Conducting Polymer Nanowires. IEEE Sensors Journal, 2008, 8, 951-953.	4.7	24
34	The Humacao Strange Matter Exhibition: Prem Brings Materials Science and Nanotechnology to Puerto Rican Communities. Materials Research Society Symposia Proceedings, 2008, 1105, 3011.	0.1	0
35	Electrostatic Force Microscopy of Nanofibers and Carbon Nanotubes: Quantitative Analysis Using Theory and Experiment. Materials Research Society Symposia Proceedings, 2007, 1025, 1.	0.1	1
36	Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode. Applied Physics Letters, 2006. 89. 033505.	3.3	44

NICHOLAS J PINTO

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Ultraâ€Fine Tin Oxide Fibers Using Electrospinning. Journal of the American Ceramic Society, 2005, 88, 2059-2063.	3.8	38
38	Electronic transport mechanism in conducting polymer nanofibers. Physical Review B, 2005, 72, .	3.2	10
39	Electrospun poly(3-hexylthiophene-2,5-diyl) fiber field effect transistor. Synthetic Metals, 2005, 151, 275-278.	3.9	70
40	Scanning Conductance Microscopy of Carbon Nanotubes and Polyethylene Oxide Nanofibers. AIP Conference Proceedings, 2004, , .	0.4	0
41	Scanning Conductance Microscopy and High Frequency Scanning Gate Microscopy of Carbon Nanotubes and Polyethylene based Nanofibers. Materials Research Society Symposia Proceedings, 2004, 838, 229.	0.1	1
42	Quantitative Analysis of Scanning Conductance Microscopy. Nano Letters, 2004, 4, 859-862.	9.1	93