Martine Raes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7638053/publications.pdf

Version: 2024-02-01

949033 939365 19 929 11 18 citations h-index g-index papers 19 19 19 2322 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	M2 Monocyte Polarization in Dialyzed Patients Is Associated with Increased Levels of M-CSF and Myeloperoxidase-Associated Oxidative Stress: Preliminary Results. Biomedicines, 2021, 9, 84.	1.4	5
2	Cycling hypoxia promotes a pro-inflammatory phenotype in macrophages via JNK/p65 signaling pathway. Scientific Reports, 2020, 10, 882.	1.6	41
3	Mitochondrial fragmentation affects neither the sensitivity to TNFα-induced apoptosis of Brucella-infected cells nor the intracellular replication of the bacteria. Scientific Reports, 2018, 8, 5173.	1.6	17
4	Mild mitochondrial uncoupling induces HSL/ATGL-independent lipolysis relying on a form of autophagy in 3T3-L1 adipocytes. Journal of Cellular Physiology, 2018, 233, 1247-1265.	2.0	15
5	Myeloperoxidase-Oxidized LDLs Enhance an Anti-Inflammatory M2 and Antioxidant Phenotype in Murine Macrophages. Mediators of Inflammation, 2016, 2016, 1-20.	1.4	8
6	Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population. Journal of Cellular Physiology, 2016, 231, 1913-1931.	2.0	10
7	Using a novel "Integrated Biomarker Proteomic―index to assess the effects of freshwater pollutants in European eel peripheral blood mononuclear cells. Journal of Proteomics, 2016, 137, 83-96.	1.2	9
8	Cycling Hypoxia Induces a Specific Amplified Inflammatory Phenotype in Endothelial Cells and Enhances Tumor-Promoting Inflammation In Vivo. Neoplasia, 2015, 17, 66-78.	2.3	32
9	M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 2015, 15, 577.	1.1	641
10	Effects of copper sulfate-oxidized or myeloperoxidase- modified LDL on lipid loading and programmed cell death in macrophages under hypoxia. Hypoxia (Auckland, N Z), 2014, 2, 153.	1.9	2
11	Lightâ€Triggered Green Fluorescent Protein Silencing in Human Keratinocytes in Culture Using Antisense Oligonucleotides Coupled to a Photoreactive Ruthenium(II) Complex. ChemPlusChem, 2014, 79, 1597-1604.	1.3	6
12	Effects of cadmium exposure on the gill proteome of Cottus gobio: Modulatory effects of prior thermal acclimation. Aquatic Toxicology, 2014, 154, 87-96.	1.9	16
13	Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches. Metabolites, 2014, 4, 831-878.	1.3	29
14	Myeloperoxidase-Dependent LDL Modifications in Bloodstream Are Mainly Predicted by Angiotensin II, Adiponectin, and Myeloperoxidase Activity: A Cross-Sectional Study in Men. Mediators of Inflammation, 2013, 2013, 1-4.	1.4	11
15	Simultaneous measurement of protein-bound 3-chlorotyrosine and homocitrulline by LC–MS/MS after hydrolysis assisted by microwave: Application to the study of myeloperoxidase activity during hemodialysis. Talanta, 2012, 99, 603-609.	2.9	26
16	Copper and Myeloperoxidase-Modified LDLs Activate Nrf2 Through Different Pathways of ROS Production in Macrophages. Antioxidants and Redox Signaling, 2010, 13, 1491-1502.	2.5	28
17	Title is missing!. International Journal of Peptide Research and Therapeutics, 1998, 5, 87-91.	0.1	O
18	Design of a synthetic adhesion protein by grafting RGD tailed cyclic peptides on bovine serum albumin. International Journal of Peptide Research and Therapeutics, 1998, 5, 87-91.	0.1	18

#	Article	IF	CITATIONS
19	Solid-phase synthesis of tailed cyclic peptides: The use of \hat{l} ±-allyl-protected aspartic acid leads to aspartimide and tetramethylguanidinium formation. International Journal of Peptide Research and Therapeutics, 1996, 3, 89-97.	0.1	15